INF AT 4 TRIEESEILTE 82— 18
(1997. 4. 25)

Similarity Indexing in High Dimensional Image Space

K. Curtis, J. Nakagawa, N. Taniguchi and M. Yamamuro
{kate, junichi, nota, masashi } @dq.isl.ntt.co.jp

Database Systems Laboratory
NTT Information and Communication Systems Laboratories

Any large scale image database must be coupled with fast and accurate image retrieval methods so that users can
effectively utilise its resources. Similarity retrieval focuses on the use of high dimensional feature vectors to represent
image content. Several indexing methods have been proposed for such vectors including many variants of the R-tree
structure. This paper proposes a method of index construction that combines elements of non-hierarchical clustering
methods and R-tree construction methods to produce an optimised tree structure index. This new structure, known as
the C-tree, has been implemented. Experimental results show that, where construction speed is not of primary
importance, the C-tree can provide superior retrieval performance..

HEFPRRDO - ODERTEMA ¥ 77 R

H-F4x I M- A0 B WS R
N T THHBERRD

KEEEE 75 N— 2L L, BEOHFHICE > TRFT2EEEDRENEE SATWE. 20ORED
RIS RTEOERIEYMAZ PVICLDESBRETHY, 7~ F R—AFKHMIC L 2 L RFILITIE
b, RRLTHE, FRERZ MEBHTOREBRLOZDDHF LA V77 ACwee B RET 2.

BA Y F7 AEEL, RREOFTREEL L VibIL TV 5VAMSplit R-tree & DHBFHEER 24T - 7.
FDFER, VAMSplit R-tree i X TC-treeld, METIID % D OMERR LD S b, KTEKEP T — & Kokt

Fyyy v

THEAF -S54 bREEENS.
OREBETHETHAHZ LG,

1 Introduction :
Advances in multimedia technologies have led to a high
demand for image database systems. An important
component of such systems should be an indexing
system that enables fast searching for similar images
based on image content. This procedure satisfies the
need of the database user to find images that are alike
without the need to verbalise the similarities between
images. Images can be represented by a set of feature
vectors and advances in image processing have meant
that these vectors which can be automatically extracted
from the image data and stored together with the original
image in the database. For example, red, green, blue,
hue, saturation, intensity and shape are all possible
features. Similarity retrieval is the process of identifying
similar images by measuring the similarity of their
feature vector sets. Although Euclidean distance is most
commonly used as a .similarity measure, it can be
advantageous to allow for other measures such as
Manhattan distance or data specific formulas.
Automatic extraction of feature vectors gives an
important advantage over more traditional key word
retrieval methods which tend to rely on time consuming
and error prone manual input of key words into the
database.) ‘

It is anticipated that each vector will be of high
dimension (sample image databases used in our research
thus far have had feature vectors that range in dimension
from 16 to 256), rendering most common spatial

IHICE D, REREFERENS L) 2ABERET ~ 5 - A

indexing systems inefficient. The most promising
advances have been achieved though modifications to
the k-d tree and R-tree structures [White 1996a]. This
paper looks at another alternative way of building the
tree index structure. Although the indexing method
described in this paper has only been applied to the
indexing of image databases so far, the system is equally
applicable to the indexing of the high-dimensional data
that occurs in other fields, for example computer aided
design, molecular biology and time-series data
collections of market data.

2 Background

The validity of measuring the distance between image
feature vectors to establish the level of similarity
between images is a basic assumption of this research.
Vectors created from the colour histograms of images
were shown to be effective in [Swain 1990]. More |
recently hue, saturation and intensity vectors have been
included and algorithms proposed for the extraction of
shape vectors [Akama 1997]. While most research has
detailed only the use of Euclidean distance as the
measure of similarity between vectors, [Vinod 1996]
proposed a colour intersection method that took
advantage of the computational efficiency of measuring

‘the Manhattan distance between vectors.

An R-tree is an extension of the B-tree indexing
method for multidimensional objects. A complex data
element is represented by its minimum bounding

hyper-rectangle (MBR). The tree is constructed so that
non-leaf nodes contain a pointer to a set of child nodes
and the value of the MBR of the MBRs of all the child
nodes. Leaf nodes contain. a pointer to a data element
and the MBR of that element. When dealing with' the
simplified case of data elements from a feature vector
set, leaf nodes contain a pointer to the image object and
the value of the feature vector for that image. Non-leaf
nodes can also be referred to as clusters as they group a
set of nodes together.

Many different flavours of R-tree, have been
proposed since the original R-tree of [Guttman, 1984].
However, most varieties of R-tree have not been able to
efficiently search data of high dimension. As pointed out
in [Berchtold 1996] as the dimension of the data
increases, the overlap between the node MBRs at a
single level in an R-tree increases dramatically leading
to a very high number of nodes that must be searched at
each level of the tree. At this point a linear search often
becomes more effective. Most R-tree structures remain
dependent on the order in which the data is inserted into
the tree and fail to take advantage of the fact that all the
data is available at the start of the construction process.
Some of the more successful refinements to the tree
construction algorithm have introduced forced

reinsertion of nodes and the deférred splitting of nodes

[Berchtold 1996, White 1996b]. These methods enable
the tree to see a greater percentage of the data elements
before making a final decision as to the position of a
data element in the tree. [Gavrila 1994] ably points out
this disadvantage and suggests a construction algorithm
that makes use of an optimisation function over the
entire data set. The major disadvantage of this algorithm
is the lengthy processing time (on the order of several
hours for data sets of 100,000 elements) necessary to
construct the tree.

Currently, ome of the most successful
implementations of the R-tree for indexing high
dimensional data appears to be the VAMSplit R-tree
proposed by [White 1996a]. This tree is created by
recursively choosing splits of the data set using the
maximum variance dimension and then choosing a split
that is the median. The tree has a fast construction time
and does take advantage of examining the entire data set
before choosing the first split.

Once the index tree has been built, a search algorithm
must be implemented to find the k-nearest neighbours to
a given data element. The branch and bound search
algorithm for the nearest neighbour searching technique
in [Roussopoulos 1995] gives the basis for the search
algorithm for many of the R-tree variations. They detail
the concept of using minimum and maximum distance
metrics between the key data element and the minimum
bounding hyper-rectangles of a set of non-leaf nodes to
establish'a prioritised search order among the those
nodes.

Approximate searchmg has also been proposed as a
way of improving retrieval performance in situations
where a user may not absolutely require an the most
accurate result. This is particularly suitable to image

data queries. Since the comparison of feature vectors is
only an approximation to the comparison a human eye
would make, a further level of approximation does not
usually significantly affect the search results and can
lead to significantly increased search umes

3 The C-tree

The purpose behind design of the C-tree is to provide a
faster retrieval indexing system for very large image
repositories in situations where the construction time of
the index is of secondary importance to the retrieval
performance time. Since each image may have five to
ten feature vectors associated with it, it would be foolish
to completely ignore either construction time or memory

storage requirements. It must still be possible to

construct all the indices for a database in a reasonable
time (minutes rather than hours) from a database
administrator’s point of view.

3.1 Construction

© Overview

The C-tree is largely based on Wishart's [Anderberg,
1973] method for non-hierarchical clustering and is
named for this use of clustering methods. Non-
hierarchical clustering methods are designed to cluster
data units into a single classification of k clusters, where
k is either specified a priori or is determined as part of
the clustering method. Wishart’s method was chosen as
it allows the number of clusters to be determined as part
of the clustering process and its use of a residue list
appears to give better clustering results for use in tree
construction than MacQueen’s k-mean method. Clusters
can themselves be considered data elements and clusters
of clusters created in order to build up a hierarchical

- structure.

The C-tree is constructed from the bottom (the
leaves) up, unlike most other previous construction
methods which have worked from the root down. The
first step of the method uses Wishart’s algorithm to

divide the data between an appropriate number of

clusters. Data units that do not fit well in any cluster (i.e.
outlying single data units) are put into a residue list.
These clusters make up the deepest layer of non-leaf
nodes, with the data elements contained inside the
clusters forming the deepest leaf nodes of the tree. The
cluster centroids, together with the data units in the
residue list, are then treated as a new data set, and the
clustering algorithm reapplied to find the nodes of the
tree at the next level. This procedure is continued until
only one cluster is needed to enclose all nodes at the
previous level in the tree. This cluster is the root of the
tree. It will immediately be noticed that this procedure
creates an unbalanced tree, with leaf nodes (actual data
elements) possibly appearing at any level in the tree.
Each node in the tree records various bookkeeping
information about itself which is used to- compile
statistics about the tree and for use in the search
algorithm. For non-leaf nodes this information includes
at least the minimum bounding hyper-rectangle and

—100—

centroid for the child nodes emanating from that node.

Details of Wishart’s Method
Wishart's method begins by defining three parameters .

thresh: the maximum distance between a data unit
and the center of the cluster it belongs to

minsiz: the minimum number of data units in a

cluster

the maximum number of iterations of the

procedure

maxit :

The first step of the method is to arrive at an initial
distribution of data units in clusters. This is achieved
using the VAMSplit R-tree and is described in the next
sub-section. :

Each cluster is then processed one by one. For each
data unit in the current cluster, the cluster which
minimises the distance between the cluster centroid and
the data unit is identified. If this minimising cluster is
not the current cluster, the data unit is moved to this
closest cluster. However, if the distance between the
data unit and the closest cluster is greater than thresh,
then the node is instead assigned to the residue list. After
an assignment or deletion of a node to a cluster, the
cluster centroid is recalculated. When all clusters have
been processed, the clusters with less than minsiz data
units are elimated and these units assigned to the residue
list. Finally all the data units in the residue list are
examined and if the minimum distance from a unit to its
closest cluster is less than thresh, the data unit is moved
to that cluster. This cycle is repeated until either no
changes are made during an iteration or the number of
iterations has reached maxit.

An important modification was made to Wishart’s
methods in order to significantly speed up its execution.
At the beginning of each iteration through the cluster
list, the complete set of inter-cluster distances are
calculated. By doing this, only nearby clusters need be
considered in the search for a cluster that is closer to a
data element than the cluster it currently belongs to. The
list of nearby clusters is only updated once every
iteration, which may result in some inaccuracies in the
list as data elements are moved between clusters.
However, these will be resolved on the next iteration
through the cluster list and the possible extra iteration
required is more efficient than exhaustively comparing
every data element with every possible cluster.

Finding the Initial Cluster Distribution

There are many ways of arriving at an initial cluster
configuration for the data units. It is possible to start by
choosing a minimum distance, mindist, for cluster
separation, or by choosing a desired number of clusters
and letting the program automatically arrive at a suitable
distance. Both these methods consume significant
processing time since they involve several iterations
through the complete data set. ‘

One parameter over which we would like to be able

exert some control, that is not considered by Wishart’s
method, is the maximum number of data elements

—101-

assigned to a cluster. If data elements are not artificially
prevented from joining an already full cluster, the
maximum number of data elements in any cluster is
initially determined by mindist.

A solution to this dilemma was found by choosing the
VAMSplit R-tree as the best way to establish an initial
cluster configuration for a set of data elements. The R-
tree has strict limits on the maximum number of data
elements allowed in any one internal node and so
adjusting the tree construction parameters is an easy
way of controlling the number and size of the initial
clusters. The R-tree is balanced so that a set of clusters
containing all the data units can always be easily
extracted from the bottom layer of the tree. Most
important, the fast construction speed of the VAMSplit
R-tree, together with its ability to create clusters with
small overlap, aids greatly in the overall performance
rating of the C-tree construction method.

As successive levels of the tree are created there are
no problems associated with applying the VAMSplit
R-tree algortihm to a set of cluster centroids, or a mixed
set of cluster centroids and data elements that may result
from the merging of a cluster set and a residue list.

Parameter Optimisation

The parameter thresh plays perhaps the most important
role in determining the final cluster configuration at a
given level in the tree. It can be thought of as the
maximum radius of a cluster and directly impacts the
number of elements that can be stored in a cluster. If
thresh is too large, the number of elements in a cluster
may become too many to allow effective searching.
Alternatively if thresh is too small, too many data
elements will be assigned to the residue and the number
of clusters will be small and each surviving cluster will
have close to the minimum number of elements allowed.

It is intuitive to see that each new level in the tree
must be created with a larger value of thresh than the
level below. In this way the cluster radius increases from
the bottom of the tree towards the top as the clusters at
each level include successively greater numbers of data
elements. The radius of the root node/cluster must be
large enough so that all data elements can be included in
the root node cluster.

Although the thresh parameter is extremely important
to the success of the clustering algorithm, there is no
obvious method for determining its value. In order to
avoid lengthening the execution time of the algorithm,
iterating over several values of thresh to find the best
distance is not a feasible option. Instead, a suitable value
for thresh can be found by examining the initial cluster
configuration derived from the VAMSplit R-tree. The
value of thresh is derived from the values of the maxium
distances from a cluster centroid to a data element in that
cluster. Currently, thresh is chosen equal to seventy per
cent of the average maximum distance but further
experimentation might prove useful in determining a
more effective choice.

It would also be possible to add a step to the
clustering algorithm that examines each cluster and, if

the number of data elements were greater than a set
limit, to split the cluster into two or more sub-clusters,
increasing the depth of the tree at that point. However,
initial investigations revealed no performance
enhancement when this was tried and the control of the
parameter thresh appears to be sufficient to achieve
good clustering results.

The value of maxit should be high enough to allow
the clusters to achieve stability. In practice a value of 20
seems to be more than adequate. The most important
cluster rearrangements generally occur on the first two
or three cycle and so where a faster index construction
time is more important, the number of iterations can be
reduced.

The value of minc is more difficult to determine. The
minimum possible value for minc is 2. A value of 1
would render the use of a residue list largely
unnecessary. By increasing the value for minc, the size
of the residue list at each level is increased significantly.
From practical observation, a value of 5 or 10 leads to
acceptable results.

Construction Speed

The C-tree index construction method was designed to
achieve good clustering results in order to improve data
retrieval speeds. It was assumed that tree construction
would be carried out infrequently, as images are usually
inserted into a database in a block at the same time.
Therefore, a fast construction time is not very important.
The tree structure does allow for the fast dynamic
insertion of a number of image data units after the initial
tree construction. Dynarnic insertion could be as simple
as searching for the most similar data element already in
the tree and inserting the new element in the same
cluster. Since there is no set maximum number of
elements in any cluster no problems with cluster
overflow need be considered. However, after a given
number of such insertions, the entire tree should be
deleted and reconstructed so that search performance is
not substantially degraded.

Since the construction algorithm does require the
computation of the similarity between a significant
percentage of data element pairs, the time needed will
still grow exponentially with the number of data
elements, albeit more slowly than previous. algorithms
that have attempted such optimisations. A limit to the
number of data elements that can easily be included in a
tree, without further modification to the algorithm,
exists and depends on the dimensionality of the data
elements and the speed of the processor executing the
construction. However, it is possible to significantly
alleviate this problem by taking advantage of the initial
exccution of the VAMSplit R-tree alogorithm to split
‘the tree into 'a small number of sub-trees and then
execute the C-tree construction method on each sub-tree
before merging the resulting trees back together to form
one complete tree. i

3.2 Searching the C-Tree
The algorithm for searching the tree to find similar

images is straightforward. The algorithm aims to find
the k nearest data elements to a supplied key element,
with an allowable approximation- of a. The
approximation factor a represents the percentage error
that is allowed when removing clusters of data elements
from consideration during the search process.

The basic algorithm is to begin at the top level of the
tree, by ranking all the nodes at that level according to
the distance from MBR of that node to the key data
element. Then, the highest ranked node (i.e. the node
closest to the key element), that is not a leaf node (i.e. is
not an actual data element) is expanded. The node is
removed from the ranking list and instead, all the child
nodes of this node are added to the ranking list
according to their distance from the reference image.
The highest ranked non-leaf node in the ranking list is
repeatedly examined in this way. The process terminates
when the ranking list contains only leaf nodes.

In order to expedite this search process, nodes can be
removed from the ranking list when it becomes
impossible for that node to contain data elements that
are closer to the-reference image than the-top-k-data -
elements found thus far. Therefore if the distance
between the theoretically closest possible data element
contained in the node and the reference image is greater
than the distance between the current k™ closest data unit
and the reference image, that node can be deleted from
the ranking list. The distance calculation can include the
approximation parameter a, to allow for the fact that the
closest data unit contained in a node is often
significantly ~further away than the theoretical
calculations can allow for.

A straightforward variation on this algorithm allows
for finding the furthest k images instead of the closest.

4 Experimental Results ,
The search performance is perhaps most usefully
measured in terms of the number of distance
calculations made in order to find the k closest data
elements to a specified key element. This is equivalent
to finding the number of nodes (both internal and leaf
nodes) in a tree that are touched during a particular
search process. The measure gives a good indication of
the comparative speeds of different search methods, yet
is independent of any particular execution environment.

All the results in this section are bases on a 21-nearest
neighbour search, where the key images is a member of
the indexed data set. This simulates a 20-nearest
neighbour search where the key images is not 2 member
of the data set. The data set is searched for each data
element in turn and the number of nodes searched, as
shown in the figures, represents the average number of
nodes searched for the index. The VAMSplit' R-tree
provides results that are largely independent of
dimension and sub-linear in proportion to data set size.
Therefore the C-tree results also display these qualities
as shown in Figures 1 to 3.

4.1 VAMSplit R-tree vs. C-tree ’
In order to determine if the use of the C-tree can

-102-

improve search performance, several data sets are
indexed using both the C-tree and the VAMSplir R-tree
and the results compared in Figure 1. The data sets are
composed of various feature vector sets for a collection
of Japanese drawings which were made available. The
results shown in the figure compare the percentage of
nodes than must be searched in each tree during the 21-
nearest neighbour search. The number of nodes
searched in the VAMSplit R-tree is taken to be 100% in
each case.

120
100
80 }

% 60
40

20

0

hu32 gl2s ws56 0s24

EIlVAMSplit R-tree I C—tree

Figure 1. Search Performance Comparison between the
VAMSplit R-tree and the C-tree.

hu32: A data set of 11620 elements in 32 dimensions
representing the hue feature vector.

g128: A data set of 11620 elements in 128 dimensions
representing the green colour feature vector.

ws56: A data set of 4132 elements in 56 dimensions
representing the shape feature vector as extracted using
wavelet analysis.

0s24: A data set of 11690 elements in 24 dimensions
representing the outer shape feature vector.

The C-tree requires fewer nodes in the tree to be
visited in all cases, but the difference (ranging from
eighty-five to ninety percent) is not as pronounced as
had been hoped for. However, since a wide variety of
data sets were not yet available for testing it is premature
to draw decisive conclusions regarding the general
relative performance of the trees.

The C-tree is an unbalanced tree, and therefore
comparisons were also made between the minimum and
maximum numbers of nodes searched in both the C-tree
and the VAMSplit R-tree. It was feared that the
unbalanced C-tree would show a wider variation in the
minimum and maximum values, perhaps leading to
worse search performance for some elements than the
balanced R-tree. However, this was not proved to be the
case.. In approximately ninety per cent of all data sets
tested the maximum number of nodes searched in the
C-tree was less, often significantly less, than in the
VAMSplit R-tree. In the remaining data sets the
maximum never increased by more than two per cent.
The minimum number of nodes searched is always
significantly less in the C-tree. Further tests are planned
to examine the variance of the search results in greater
detail.

4.2 Data Set Size and Dimensionality

In order to obtain a sense of how the C-tree search
performance is dependent on the data set size and
dimension, a series of tests were carried out on the
image feature vector sets as well as manufactured data
sets. Figure 2 shows the change in the percentage fewer
nodes searched for a change data dimension on the
search performance. Again the percentage is measured
relative to the performance of the VAMSplit R-tree. The
initial feature vector is a 256 dimension vector
representing the colour green. This was reduced to three
alternative vector sets of dimensions 128, 64 and 32. It
appears that the optimisation becomes less effective as
the dimension of the data increases.

100
95
90

%85 I
80
5 ,
70 : :

0 100_, . 200 300
Dimension

Figure 2. Optimisation of Search Performance as the
Data Set Dimension Changes.

Figure 3 shows the effect of changing the size of the data
set while the dimension of the data set is fixed at 4. The
data used in this series of tests is artificially
manufactured random data.

——CG-tree
-~ -8 -- C'-tree

70 ! 1 ! 1

0 100000 k200000 300000 400000 500000
Data Set Size

Figure 2. Optimisation of Search Performance as the
Data Set Size Changes.

The optimisation of the search performance increases
slightly as the size of the data set increases. This is
important for databases that wish to index very large
amounts of data in a single structure. However, further
tests are needed to show that this is also true for data sets
derived from actual images.

4.3 C-tree Construction Speed
A C-tree containing 10,000 data elements can be cieated

—103—

in less than 1 minute. However, a tree containing
100,000 elements typically takes up to 40 minutes to
construct. (These tests were carried out on a Sun Sparc
workstation) This is still significantly faster than the
optimisation method. suggested in [Gavrila 1994] and
may be justified by the increased search performance.
Alternatively, the larger tree can be subdivided into a set
of sub-trees during the initial application of the
VAMSplit R-tree algorithm and each subtree subjected
to the rigorous C-tree construction method. In this case
the construction time is reduced significantly to less
than 10 minutes and the search results are still improved
over the VAMSplit R-tree. The dashed line in Figure 3
represents the performance of the C'-tree index built in
this way.

4.4 Other Observations

Preliminary trials showed that approximate searching
could be used to great effect in both the C-tree and the
VAMSplit R-tree with the number of nodes searched
typically being cut by about 30% with negligible error
when an approximation factor of 10% is allowed. It was
also noted that the parameter that appeared to exert most
effect on search performance was the node size chosen
for the initial cluster identification using the VAMSplit
R-tree algorithm.

5 Conclusions

The results of the similarity retrieval tests using the C-
tree shows that it is possible to further optimise tree
index construction using quasi-exhaustive iterative
techniques when construction speed is not of primary
importance. Previously such optimisation had been
dismissed as too time comsuming, but the C-tree
provides an efficient construction algorithm that can
achieve further optimisation in an acceptable time. By
allowing the C-tree to become unbalanced it is thought
that the volume of some minimum bounding hyper-
rectangles can be significantly reduced as isolated nodes
are not forced into a cluster. This leads to improved
performance.

The C-tree provides increasingly improved
performance as the size of the data set is increased, even
when the optimisation process is only carried out on
individual sub-trees in order to speed up construction
time. However, initial results would indicate that the
optimisation is reduced in effectiveness as the
dimension of the data set increases. It is possible that
this trend could be reversed if closer attention is paid to
adjusting the clustering algorithm parameters in a
dimension dependent manner. The optimisation would
still appear worthwhile on small and medium dimension
data sets.

There is much work that still needs to be done to
optimise the automatic selection of construction
parameters for both initial tree and optimisation phases
of the C-tree construction process. The maximum node
size allowed in tree construction, the minimum number
of child nodes allowed in an internal node, the threshold
distance for a data element’s removal to the residue list

and the number of iterations allowed in the optimisation
process can all dramatically affect the search
performance of the tree. It may well be that further
improvements in performance will best be gained from
looking at these parameters than by finding new ways to
optimise the methodology of tree construction.

It is also important to look at the overall search
strategy for an image database retrieval system. It is
usually necessary for a single search to combine the
results from several different indices. These indices may
be of the same type, simply representing different types
of feature vector, or they may be completely different
indexing systems. The procedure to combine these
different. search results must also be optimised to
provided an overall efficient search performance.

References

[Akama 1997] Akama H., Mii K., Konya S. and
Kushima K. “ExSight - Image Retrieval System based
on Automatic Object Extraction,” Proc. of IEICE
DEWS 97, March 1997.

[Anderberg 1973] Anderberg M.R., Cluster Analysis for
Applications, Academic Press, 1973.

[Berchtold 1996] Berchtold S., Keim D.A. and Kriegel
H., “The X-tree: An Index Structure for High-

Dimensional Data,” Proc. of the 22" VLDB
Conference, 1996.
[Gavrila 1994] Gavrila DM, “R-tree Index

Optimization,” CAR-TR-718, University of Maryland
Technical Report, June 1994.

[Guttman 1984] Guttman A., “R-trees: a Dynamic Index
Structure for Spatial Searching,” Proc. of ACM
SIGMOD, 1984.

[Kamel 1994] Kamel 1. and Faloutsos C., “Hilbert R-
tree: An Improved R-tree Using Fractals,” Proc. of the
20" VLDB Conference, 1994.

[Petrakis 1994] Petrakis E. and Faloutsos C., “Similarity
Searching in Large Image Databases,” Technical Report
CS-TR-3388, University of Maryland, College Park.
[Roussopoulos 1995] Roussopoulos N., Kelley S. and
Vincent F., “Nearest Neighbor Queries,” Proc. ACM
SIGMOD, 1995.

[Swain 1990] Swain M. and Ballard D., “Indexing Via
Color ' Histograms,” Proc. Image Understanding
Workshop, pp. 623-630, 1990.

[Vinod 1996] Vinod V., Murase H. and Hashlzums C.,
“Focussed Color Intersection with Efficient Searching
for Object Detection and Image Retrieval ” Proc. IEEE
Multimedia 96 , 1996.

[White 1996a] White D.A. and Jain R., “Algorithms and
Strategies for Similarity Retrieval,” Technical Report
VCL-96-101, University of California at San Diego,
1996.

[White 1996b] White D.A. and Jain R., “Similarity
Indexing with the SS-tree,” Proc. 12" IEEE
International Conference on Data Engmeermg, New
Orleans, 1996.

—104 -

