TNFAF 4 TRBIELHENE 85—-39
(1997, 11. T

Optimistic Locking in Replicated Objects

~ Kyouji Hasegawa, and Makoto Takizawa

Tokyo Denki University
E-mail {kyo, taki}@takilab.k.dendai.ac.jp

The system is composed of multiple objects. Each object supports more abstract operations than the
low-level read and write operations. The objects are replicated to increase the performance, reliability,
and availability. In this paper, we discuss a synchronization method to make multiple replicas of objects
mutually consistent. In the traditional optimistic two-phase locking (O2PL), every replicais first locked in
- aread mode to write an object. Finally, all the replicas are locked in a write mode when the transaction
commits. We propose a. novel optimistic object-based locking (OOBL) method based on the abstract
" operations. Here, the number of the replicas locked is decided based on the access frequency and the
strength of the lock mode.

SE(L& nr—:w 17 MITAIESEMNOY Y

BBl EZ ‘?%‘?R o,
RRERAEE TR E TER
E-mail {kyo, taki}@takilab.k.dendai.ac.jp

BENEHI AT L, EROHARIEERCTHEERSNFHBOERL 2> Tnd, FBVATLA
DBRFIXATI22 PELTEFPMMEENS, 7V 22 Mid, FEE. THE. EE2EEIEL-012,

BHOFEBR~ZENENIBEY D2, T 7V =7 VOMOREANDIE—-R L7 A LT, LT
HEO—BHREROLENDZ, —HBELZROFRLLTE, Uy 7 ARIRRER TS, LALEYSF
KT, HEOBAIHTHS L) 2IACH LT, HECETAMEL 22, Shio LEEMO®ED
WHTHHLEELT, L7 AHO—BMEEROFRIERN 20y 2 5 THs. KRI T, XMy

7EEEH.
FEERET 2,

1 Introduction

The distributed applications are tea.hzed by the
cooperation of multiple objects oy,...,0, which
exchange messages through the communication
network. Each object o; supports abstract opera-
tions for manipulating the state of 0;. The objects
have to be mutually consistent in the presence of
multiple accesses to the objects.

Many kinds of concurrency control methods [2]
are discussed so far. In the famous two-phase lock-
ing (2PL) protocol {2,3], the transactions lock the
objects before computing the operations on the
objects. Most systems adopt the strict 2PL pro-

tocol where the locks obtained are released at the
end of the transactions in order to resolve the cas-
cading abort. Otherwise, the cascading abort of

transactions may occur. One of difficulties in the
distributed applications like the groupware [4] is
that the objects are locked for a longer time. The
optimistic concurrency control [8] is discussed to
reduce the overhead implied by the locking. Here,
every transaction 7' manipulates objects without
locking the objects. When the transaction T ends
up, T' commits unless every object manipulated
by T is manipulated by other transactions in the
modes conflicting with T. Here, only read and
write operations are considered.

In order to increase the reliability, availability,
and performance of the system, the objects in the
system are replicated. In the mobile database sys-
tems [1], the objects are also replicated by cashing
the data in the fixed servers into the mobile clients

—225—

Ty s HROMBRTHEIMROBTEEE, P72 a o7 K- MERERSELS

in order to resolve the disconnected operations
[5,7]. Here, it is critical to make the replicas of the
object mutually consistent. Jing [6] discusses an
optimistic two-phase locking (O2PL) method to
maintain the mutual consistency among the repli-
cas. In the O2PL, if a transaction’T" would write
an object o, T locks all the replicas of o in a read
(Rlock) mode. If locked, T manipulates the repli-
cas. When T commits, T tries to convert the.
Rlock mode on the replicas to a write (Wlock)
mode. If succeeded, T commits. ‘Otherwise, T'
aborts.

The distributed applications -are curtently
modeled in an object-based concept. That is, the
applications are modeled to be collections of ob-
jects cooperating with each other. CORBA [10] is
becoming a standard framework of the distributed
applications. The objects can support more ab-
stract operations than traditional low-level read
and write operations. For example, a-Bank ob-
ject supports Deposit and Withdraw operations
which are realized by read and write operation on
the internal files. The objects can be manipulated
only through the operations supported by the ob-
jects. In this paper, before each object is manipu-
lated by an operation op, the object is locked in an
abstract mode corresponding to op, e.g. Deposit
mode for the Deposit operation of the Bank ob-
ject. The conflicting relation between the lock
modes is defined based on the conflicting oper-
ations. That is, if an operation op; conflicts with
op in an object o, the lock mode of op; conflicts

with op;. We discuss a novel optimistic concur-
rency control to maintain the mutual consistency
among the replicas. In this paper, we propose a
novel optimistic locking scheme for the replicated
objects, named OOBL (optimistic object-based
locking) protocol. The number of replicas to be
locked depends on how strong the lock mode of
the operation is and how freguently the opera-
tion is invoked. The stronger and more frequently
used the lock modes are, the fewer replicas are
locked.

In section II, we present the system model. In
section III, we discuss the OOBL protocol.

2 System Model

2.1 Objects

A distributed system is composed of multiple
objects o1,...,0, which are cooperating by ex-
changing messages in the communication network
N. Let O be a set of objects in the system, i.e.
O = {o1,...,0n} (n,> 1). The communication
network N supports every pair of objects o; and
o; with a reliable, bidirectional channel {o;,0;).
Thus, o; can exchange messages with o; by the
channel (o0;,0;) without any message loss in the
sending order.

A transaction T sends a request op; to an ob-
ject 0;. On receipt of op;, o; computes op;. Here,
op; may invoke an operation op;; on another ob-
ject 0;;. 0; sends the response of op; back to T if
the computation of op; completes. T is an atomic
sequence of operations. T commits only if all the
operations invoked by T successfully complete, i.e.
operations commit. The operation op invoked by
T commits only if all the operations invoked by
op commit. op is also an atomic unit of computa-
tion. Thus, the operations are nested, i.e. nested
transaction [9)].

Each object o; supports a set 7; of operations
opi1, - . . ,0p;; for manipulating o;. o; is encapsu-
lated so that o; can be manipulated only through
the operations supported by o;. Let op(s) denote
a state obtained by applying op to a state s of
0;. An operation op;; is compatible with op;; iff
op;j © opix, (8i) = opik © op;j (s;) for every state
s; of 0j. opij conflicts with opir (opi; — opix)
unless op;; is compatible with op;z. If op;; con-
flicts with op;x, the state obtained by computing
op;; and op;x is independent of the computation
order. If some operations conflicting with op; are
being computed on o;, op; has to wait until the op-
erations complete. In this paper, we assume that
“—” is symmetric, i.e. op;; — opi iff opix — opi;.
It is written op;; < opi.

A transaction T manipulates objects o0y,...,0,
by invoking operations opy,...,0p,, respectively.
On receipt of the request op;, o; is locked in a lock
mode p(op;). Here, let M; be a set of lock modes
of 0;. For example, Rlock and Wlock are u(read)
and p(write), respectively. Dlock and Wiock de-
note the lock modes of Deposit and Withdraw.

A mode m; is compatible with my (m; — my)
in M; if the operations op; of mode m; is compat-
ible with ops of my. Otherwise, m; conflicts with
my. For example, two Rlocks are compatible in
a file object. Dlock and Wlock are compatible in
a Bank object. If o; is locked in a mode m with

which p(op;) conflicts, op; blocks. op; is computed
only if o; is locked in u(op;). After computing op;,
the lock u(op;) of o; is released. Problem is when
0; is released. Here, suppose that op; invokes op;;
on o;; (j =1,...,1). There are the following ways
for releasing the locks:
[Releasing schemes]
(1) Open : o; is released when op; completes.
(2) Semi-open : o;y,...,0; are released when
op; completes: However, o; is not released.
(3) Close : Every object locked in op; is not re-
leased. Only if T completes, all the objects
locked in T are released. O
In the open scheme, the object o; is released as
soon as op; completes. Here, the fewest number
of the objects are locked. However, the cascading
about may occur. On the other hand, every ob-
ject is locked until the transaction T' completes in

the close scheme. The close scheme is the same as
the strict two-phase locking (2PL) [2]. The largest

number of the objects are locked and the through-
put of the system is decreased in the close one.
2.2 Replicas

In order to increase the reliability, availability,
and performance, an object o; is replicated in a
collection { o},...,0% } (k; 2> 1) of replicas, where
o} is a replica of o;. Each o supports the same
data and operations as the other replicas. That
is the objects are assumed to be fully replicated.
Let r(0;) be { 0},...,05 } (k; > 1).

Here, suppose that an operation op; on an ob-

ject o; is invoked. Suppose that op; invokes an
operation op;; on an object o0;; and o;; further in-
vokes op;;x on o;;x [Fig. 1]. Here, suppose that
r(o;;) = { o}j,...,o?;" }. If op; sends a request
op;; to the replicas o}, ..., of]f" , opi; is computed
on the replicas. On receipt of op;;, o:-‘j computes
op;; and then invokes op;;;. Since multiple repli-
cas invoke op;;i, opi;i is computed multiple times
on 0;. For example, if op;;i. is an operation to
add some value z, to value of o;j is incremented
by kij - z, not . Thus, If op;jx updates o;j,
the state of o0;j; gets inconsistent since op;jx is
computed multiple times on o0;;;. This is named
inconsistent redundant invocation [11]
. In order to resolve the inconsistent redtg]daxit
invocations of the operations on replicas, the fol-
lowing invocation rule is adopted. There are two
cases:

(1) opi; does not invoke any operation; If op;;
changes the state of 0;j, op;; is computed on
every replica of-‘j. Otherwise, op;; is computed
in one replica o¥,.

(2). opi; invokes some operations opijx on 0;k;
op;; is invoked on one replica o:‘j or every
replica if op;; changes o;; or not like (1). In
either case, only one replica o?j invokes op;ji.

On receipt of the response of op;;j; from o;,

ofj forwards it to all the other replicas if op;;

changes ofj. On receipt of the state for ofj,

oﬁ'j (h # k) changes the state so as to be the
same as o}‘,- by using the state.

—226-—

Figure 1: Invocation on replicas.

3 Optimistic Object-Based Locking

The system includes multiple
01,...,0,. Each object o; supports a set 7; of op-
erations op;y,...,0py, (I > 1). o; is replicated in
a set 1(0;) of replicas o}, ..., o (k; > 1). We dis-
cuss an optimistic object-based locking (OOBL)
protocol for maintaining the consistency among
the replicas of o;.

3.1 Lock modes

First, we discuss how the lock modes supported
by the object o; are related. Before computing op;,
0; is locked in a mode u(op;) in M;. Suppose that
0; is locked in a mode m and op; would be com-
puted on o;. If pu(op;) is compatible with m, op;
can be started to be computed on o;. Otherwise,
op; has to wait until the lock of the mode m is
released. Here, let C;(m) be a set of modes with
which m conflicts in o;, i.e. Ci(m) = {m' | m'
conflicts with m}. In this paper, we assume that
the compatibility relation among the modes are
symmetric. Hence, m is in C;(m') for every m’ in
C‘(m)
[Definition] For every pair of modes m; and m,
in M;, m, is more restricted than m, (m1 = my)
iff C,-(ml) Q C"(’mq).D
[Example 1] Let us consider a file object f
with operations read and write. Let Rlock and
Wlock be lock modes for read and write, respec-
tively. Since read conflicts with write, Rlock
conflicts with Wlock. Rlock is compatible with
Riock. Cy¢(Rlock) = {Wlock} and C¢(Wilock) =
{ Wlock, Rlock }. Since Ci(Rlock) C C¢(Wlock),
Wiock is more restricted than Rlock (Wlock =
Rlock). O

[Example 2] A Bank object b supports abstract
operations Deposit, Withdraw, and Check.
Let Dlock, Wlock, and Clock be lock modes
#(Deposit), u(Withdraw), and u(Check). Dlock
and Wiock are compatible. Clock conflicts with
Diock and Wlock. Cy(Dlock) = Cy(Wlock) =
{Clock} and Cy(Clock) = {Dlock, Wilock}. Since
Cy(Dlock) N Cy(Clock) = ¢, neither Dlock =
Clock nor Clock = Dlock. O

In Example 2, there is no restriction relation
= among the modes. However, Clock has more

objects

modes conflicting with Clock than Dlock and
Wilock. We discuss which modes are stronger.
[Definition] For every pair of modes m; and my
in M;, m, is stronger than my iff m, € Ci(mg)
and |C,(m1)l > |C,(m2)| .0
In Example 2, |Cy(Clock)| > |Cy(Dlock)|. Here,
Clock is stronger than Dlock and Wlock. The
stronger the lock mode m is, the more conflict-
ing modes m has. It is straightforward that
ICi(m1)] 2 |Ci(my)| if my = m,.

Some mode may be more frequently used than
others. If a mode m; conflicting with a mode m;
is used frequently, an operation of m, has to wait

.more often. Here, let (m) be the usage frequency

of a mode m, i.e. how many operations whose
modes are m are issued to o; for a unit time, The
frequencies of the modes in o; are normalized to
be 37 ¢ u; (m) = 1. The weighted strength

[ICi(m)]| is defined to be Comreci(m) (m').

[Definition] For every pair of modes m; and m,
in M;, m, is stronger than m, on the weight
(my is w-stronger than mj : m = my) iff
my € Ci(my), my € Ci(my), and ||Ci(m,)|| >
ICi(m2)|| . D

The more w-stronger a mode m is, the longer
an operation of m has to wait.

It is clear that ||Ci(my)|| > ||Ci(m2)]| if m; =
my. Hence, my = my; if my => my. Suppose that
op; and op; are operations of modes m; and my
in an object o;, respectively. Let us consider a
blocking probability that op; waits for the release
of the lock conflicting with op;. If [ICi(my))] >
[[Ci(ma)||, op1 has a higher blocking probability
than op,.

In Example 1, Wiock > Rlock since Wiock
= Rlock. In Example 2, suppose that the us-
age ratios of Clock, Dlock, and Withdraw are
60%, 30%, and 10%, respectively, i.e. @(Clock)
= 0.6, p(Dlock) = 0.3, and @(Wlock) = 0.1.
[|C(Clock)|| = @(Dlock) + @(Wlock) = 0.4.
||Cs(Dlock)|| = [|Cs(Wlock)|| = @(Clock) = 0.6.
Hence, Clock < Diock and Clock < Wlock since
[ICs(Clock)|| < ||Cy(Dlock)|| and |[Cy(Clack)|| <
[|Co(Wiock)||. Diock and Wlock have a higher
blocking probability than Clock.

The modes in M; are partially ordered by the
w-strength relation “<”. A mode m is referred
to as mazimal in M; iff there is no mode m’ in
M; such that m < m’. m is mazimum iff m’
=< m for every mode m’ in M;. The minimal and
minimum modes are defined in the similar way.
For every pair of modes m; and m, in M;, a mode
m is a least upper bound (lub) m; Umy of modes
my and my iff (1) m; <X m, (2) m; < m, and (3)
there is no mode m’ such that m; < m’ < m and
mg X m’ < m. The greatest lower bound (gib)
my N my is similarly defined.

3.2 Equivalent class

Objects can generally support arbitrary num-
ber of operations while files support only read and
write. The more operations the objects support,
the more complex it is to analyze the strength re-
lation among the operations. Hence, we first try
to reduce the number of operations to be analyzed.

First, we partition the set m; of operations of

—227-

0; into disjoint groups which are composed of op- -

erations related. : .
[Definition] For every pair of operations op; and
ops in m;, op; and op; are related (opy ~ opz) iff
one of the following conditions holds;
(1) op, and op; conflict.
(2) op, ~ op; and op; ~ op; for some operation
ops in m;. O
Here, “~" is reflexive and symmetric. Hence,
is equivalent. m; is partitioned into the equivalent
classes by using “~". Here, let R;(op;) denote an
equivalent class {opz | op, ~ op; in m;} of op1,
i.e. for every op; in Ri(op1), Ri(op1) = Ri(op2).
op; and op ‘are compatible in o;. if Ri(op)
Ri(op,), i.e. opy and opy are not related. It is
noted that op; ~ op; may hold even if op; and
op; are compatible.

Let us consider an example where an object o;
supports six operations opy,...,0ps in m;. Sup-
pose that there is a conflicting relation, i.e. op;
— opy (opy conflicts with ops), opz « ops,
op, < ops, ops « ops and ops < ops [Fig.
2. Ra = Ri(op) = Ri(ops) = {op1,0ps}-
Riz = Ri(ops) = Ri(ops) = Ri(ops) = Ri(ops) =
{opz,0p3,0p5,0ps}. 7; is_partitioned into two
equivalent classes R;; and R;; as shown in Fig. 2.
Since operations in different classes are compati-
ble with each other, we can discuss the strength
of the lock mode in one class independently of the
other classes.

“N”

- e o o . s

Figure 2: Related operations.

Here, suppose that there is an equivalent class
R;j in o; (J = 1,...,t,-),
[Definition] For every pair of operations op; and
op; in each equivalent class R;;, opy and op; are
at the same level (opi = ops) iff op; and op; are
compatible and C;(op;) = Ci(opz). O
In Fig. 2, ops and op; are at the same level (ops =
. ops) since op; and ops are compatible and C; (op2)
= Ci(ops) = {ops, ops}. ops = ops. ops and ope
are not at the same level as op;. .
Here, let (op;;) denote a usage frequency that
op;; isinvoked in o;. In this paper, we assume that
every pair of operations op; and op; have different
lock mode, i.e. u(op;) # p{op2). Hence, ©(opi;) =
@(u(op;;)). The frequencies are normalized to be
3 opeRi(opi;) P(0P) = 1 for each equivalent class
R;j(op). Each equivalent class R;; can be reduced
as follows :
[Reduction]
(1) Let S;;(opi;) be a set of operations which are
at the same level op;; in Ryj, i.e. Sij(opij) =
{0’ | opij = op'}.
(2) For each operation opi; in R;, all the opera-

tions in S;;(opi;) are replaced with a virtual
operation op. .

(3) wlop) is given as Y5, (op:;) P(0F)- O
[Example 3] The graph R;; shown in Fig. 2
can be reduced to one shown in Fig. 3. Since
op; = ops, op; and op; are merged into one Vir-
tual operation opz 3. ops and ops are also merged
into ops ¢ since ops = ops. Suppose that p(op2)
= 0.4, p(ops) = 0.3, p(ops) = 0.2, and p(ops) =
0.1 in Ryz. Here, p(opz;3) = p(ops) + w(ops) =
0.7 and p(ops,6) = 0.3. ¢(op1) = 0.6 and ¢(ops)
= 04 in R;;. Since Ry, = {op1, ops} and Ry
= {Opz,Opa,Ops,Opﬁ}, ‘P(opl) +<p(0p4) = 1.0 and
(op2) + (ops) + w(ops) + p(ops) = 1.0.0

From here, we assume that we consider each

‘ reduced class in an object.

Figure 3: Merged operations.

3.3 Locking protocol

The traditional systems support has only two
types of operations, i.e. read and write, where
Wock is stronger than Rlock. In the O2PL, the
replicas of the object to be written are first locked
in Rlock. The replicas are finally locked in Wlock.
In the object-based system, each object o; sup-
ports more abstract objects which support more
types of operations. That is, there may be more
than two lock modes. For example, the Bank ob-
ject b supports Check, Deposit, Withdraw, and
Trans fer operations. In addition, the lock modes
in M; are partially ordered by the strength rela-
tion “=<” as discussed in the preceding subsection.

We discuss the optimistic concurrency control
to maintain the mutual consistency among mul-
tiple replicas o},... ,o{-"’ of an object o;. Suppose
that a transaction T invokes an operation op;; on
0;. First, some number of the replicas in r(0;) are

‘locked in a mode u;(op;;) which is not stronger

than p(opi;). Let fi(opi;) (< ki) be the number
of the replicas locked by op;; before op;; is com-
puted. Unless all of f;(op;;) replicas can be suc-
cessfully locked, op;; is aborted. If all of fi(opi;)
replicas could be locked, op;; is computed on the
replicas as presented before. When T' would com-
mit, some number fi(op;;) of the replicas are
locked in a mode p(opi;). fi(opi;) < fa(opi;) and
p(opi;) =X p(opis)-

We discuss how to decide the numbers f,(op;;)
and fo(opi;) of the replicas to be locked and the
lock mode g, (0pi;). The more replicas are locked,
the more communication and computation are re-
quired. Hence, the more frequently op;; is in-
voked, the fewer replicas are locked. fi(op;;) and
f2(opi;) are decided depending on the probabil-
ity that op;; conflicts with other operations of o;.
There are the following constraints on f; and fs:

(1) If p(op;;) conflicts with p(opi), Jalopij) +
f2(opix).> ks and fa2(opi;) + fi(opix) > ki
(2) falops;) = falopu) iff ||Ci(opi)ll 2

—228—-

[ICi(opix)||.

Here, suppose that op;; locks fi(op;;) replicas
in 7(0;) = {o},... ,of"}. Suppose that two oper-
ations op;; and op;; are invoked and conflict in
0;. The probability that both op;; and op; can
lock the required number of the replicas is given 1
- [fs(opi;) - plopij) /k: | [fulopik) - w(opix)/ki).
Ci(opi;) is a set of operations conflicting with
op;; in o;. Here, the probability F}(op;;) that
op;; can lock f,(op;;) replicas is 1 - HOPGC‘(OM)
[fr(op)-©(op)/ki]. fa(opi;) can be decided so that
the probability Fy(op;;) is the minimum.

In this paper, we present a simplified OOBL
protocol, where f1(op;;) is equal to fy(op;;), say
flopij) = fi(opi;) = fa(opi;), and p(op;;) is the
same for every operation op;; of the object 0;. We
first define a bottom mode L for every class R;
of 0;. L is defined to be a mode satisfying the
constraint that L < m for every mode m in R;
and L is compatible with 1 . 1 is the lub of M.
If M; = {Rlock,Wlock}, 1 is Rlock because Rlock
= Wlock. Unless there is the minimum in M;, an
artificial mode 1 is included in M;.

Suppose that an operation op;; in a transaction
T would lock replicas o}, ..., 0 of o;. o; is locked
by the following locking scheme.

[Locking scheme]

(1) First, f(opi;) replicas in r(o0;) are randomly
selected. Let S; be a subset of the replicas
selected from 7(o;).

(2) Every replica in S; is locked in the bottom

mode L.
(3) If succeeded in locking all the replicas in S;,
the replicas in S; are manipulated by op;;.
(4) When the transaction T commits, the lock
mode of every replica in S; is converted up to
#(opi;). If succeeded, T' commits. Otherwise,
T aborts. O

4 Concluding Remark

This paper has discussed the optimistic object-
base locking (OOBL) protocol on the replicas of
the objects. The objects support more abstract
operations than the traditional read and write op-
erations. We have defined to weighted strength of
lock modes based on the conflicting relation and
usage frequency. In the OOBL protocol, the num-
ber of replicas to be locked is decided based on the
weighted strength of the lock modes.

References
[1] Barbara, D. and Imielinski, T., “Sleepers and
Workaholics: Caching Strategies in Mobile
Environments,” Proc. of the ACM SIGMOD
, pp. 1-12, 1994.

[2

Bernstein, P. A., Hadzilacos, V., and Good-
man, N., “Concurrency Control and Recov-

erl)é gl’; Database Systems,” Addison - Wesley

[3

=

Carey, J. M. and Livny, M., “Conflict De-
tection Tradeoffs for Replicated Data,” ACM
TODS , Vol. 16, No.4, pp. 703-746, 1991,

—229-

[4] Ellis, C. A., Gibbs, S. J., and Rein, G. L.,
“Groupware,” Comm. ACM , Vol.34, No.1,
pp-38-58, 1991.

[8] Gruber, R., Kaashoek, F., Liskov, B., and
Shrira, L., “Disconnected Operation in the
Thor Object-Oriented Database System,”
Proc. of IEEE Workshop on Mobile Com-
{)g;ing Systems and Applications , pp. 51-56,

4.

[6] Jing, J., Bukhres, O., and Elmagarmid, A.,
"Distributed Lock Management for Mobile
Transactions,” Proc of IEEE ICDCS — 15,
pp. 118-125, 1995.

[7

—

Kistler, J. J. and Satyanaranyanan, M., “Dis-
connected Operation in the Coda File Sys-
tem,” ACM Trans. on Database Systems,
Vol. 10, No. 1, pp. 2-25, 1992.

[8] Kung, H. T. and Robinson, J. T., “On Op-
timistic Methods for Concurrency Control,”
ACM Trans. on Database Systems, Vol.6,
No.2, pp. 81-87, 1994.

[9] Moss, J. E., “Nested Transactions : An Ap-
proach to Reliable Distributed Computing,”
The MIT Press Series in Information Sys-
tems, 1985.

[10] Silvano, M. and Douglas C, S., “Construct-
ing Reliable Distributed Communication Sys-

tems with CORBA” IEEE Commaunications
Magazine, Vol.35, No.2, pp.56—60, 1997.

[11] Yoshida, T. and Takizawa, M., “Model of
Mobile Objects, ” Proc. of the 7th DEXA
(Lecture Notes in Computer Science, No
1134, Springer-Verlag), pp. 623-632, 1996.

