PNF AT 4 TBEESEME 85— 16

(1997. 11. 8)

Quality-based Compensation in Flexible Distributed Systems

Tetsuo Kanezuka, and Makoto Takizawa

Tokyo Denki University
E-mail {kane, taki}@takilab.k.dendai.ac.jp

This paper discusses how to make a distributed system flexible so as to satisfy the application’s require-
ment in the change of the system environment. The system is modeled to be composed of multiple objects
which are cooperating. Each object supports other objects with types of service and quality of service
(QoS). The change of the system is modeled to be the change of QoS supported by the objects. We discuss
relation among the operations with respect to QoS. We define QoS-based equivalency and compatibility

of the operations. By using the QoS-based relation,

we newly discuss a QoS-based compensating way to

recover from the less qualified state. Here, the object is transited to the state which can support QoS

required but may not be the same as the previous one.

QoS XSV AEREHME S X5 A
&R B ER &%

RERERAFRT 28 TEH
E-mail {kane, taki}@takilab.k.dendai.ac.jp

ERATE, YATLRBOZRE BT, BADERLBET 20 RBEDSH 258 27 4 £
EFTAHECOVTRL D, YAFARA Y - JYORRIZL VRADET AHBOF 7V = 7 Mok B
N, TNENDE T V27 bit, FNENDOF TI 27 M EEOH—CRADI LT L s+) F 4 4 TH—
YR (QoS) ¥4 H— 1T, YAFTADEIRA TV 27 MILoTHHE—F 1% QoS DE{LE LTES
CEHTE D, HBA TV s M, BEPEBOL I RA TV s OO DERAICL > TERS NS
QoS £ HR— T LV LALV, RBXTHR, LVHROLEVRED SHIAT 2 200, QoS (o
TOLHEHECOVTRES, STk, #7Yx2 M, DHOKBERL TR VIS LAZLA, B

REND QoS £ H— FCELRE~EBENS,

1 Introduction

It is important to support applications with
flezible service in a distributed system including
kinds of commercially available workstations in-
terconnected by standardized communication net-
works. In this paper, units of resources in the
system are referred to as objects. Each object is
modeled to be an encapsulation of data and oper-
ations for manipulating the data.

One of the major changes in the system is fault.
There are two approaches to realizing the fault-
tolerant system; replication and checkpointing.
The active replication [2,12] and passive replica-
tion [3] are discussed so far. In the replication
methods, multiple replicas of an object cooperate
to support services of the object. In the active
replication, every replica does the same compu-
tation and communication. Hence, the service of
the object can be supported as long as at least one
replica is operational. In the checkpointing [6],
the state of the object is saved in the stable log
at the checkpoint, If the object is faulty, the ob-
ject is rolled back to the checkpoint by restoring
the state. Many protocols [6] to take the consis-
tent checkpoints among the objects are discussed.
The consistent checkpoint is defined to denote the
states of the objects where no orphan messages
exist. The orphan messages are ones received by
an object but sent by no object. Tanaka and
Takizawa [14] discuss an object-based checkpoint
which allows orphan messages to exist but which

is consistent from the object point of view. The
number of checkpoints can be reduced. If some
object is faulty, the object is rolled back to the
object-based checkpoint.

In addition to the object fault, other properties
of the system change. For example, the response
time and throughput of an object o; change up to
the computation and communication load of o;.
The service supported by o; is characterized by
the parameters showing QoS. Yoshida and Tak-
izawa [15] model the movement of the mobile ob-
ject to be the change of QoS supported by the mo-
bile object. It is critical to discuss how to support
QoS which satisfies the application’s requirement
in the change of QoS supported by the objects.
For example, if o; does not support QoS required
by the application, the application can use an-
other object which supports enough QoS. o; sup-
ports service through the operations which ma-
nipulate the state of o;. In this paper, we discuss
kind of relations among the operations supported
by the object with respect to QoS. That is, QoS-
based equivalency and compatibility of operations
are defined. we discuss how the system supports
the applications with QoS required in the change
of QoS supported by the objects. :

In this paper, we discuss a way to compute the
compensating operations [9,13] of the operations
computed after ¢; in order to roll o; back to c;.
In addition, it is critical for o; to support QoS re-
quired by the application when o; is rolled back.
In multimedia applications, it takes time to re-

store a large volume of high-resolution video data.
Instead of restoring the high-resolution data, we
can reduce the time for recovering the system if
data with lower resolution but satisfying the appli-
cation requirement is restored. In this paper, we
discuss a method where o; may not be rolled back
to the same state denoted by c; but can be surely
rolled back to the state supporting QoS which sat-
isfies the application’s requirement.

In section 2, we present the model of the sys-
tem. In section 3, we discuss the relation among
the operations on the basis of QoS. In section 4,
we discuss the compensation to recover the objects
from the fault.

2 System Model
2.1 System configuration

A system is composed of multiple objects which
are cooperating to achieve some objectives. Let O
be a collection of objects, i.e. O = {o1, ..., 0n}.
The objects communicate with other objects by
the reliable network.

Each object o; is an encapsulation of the data
structure 6; and a collection 7; of abstract oper-
ations op;j, ..., opy, for manipulating &;. o; can
be manipulated only through the operations sup-
ported by o;. For example, the bank object sup-
ports withdraw, deposit, check, and transfer oper-
ations. The movie object supports play, rewind,
stop, quick-motion, and slow-motion operations.
The mouvie can be manipulated only by these op-
erations.

Operations change the state of o; and output
some data as the responses. Let op;;(s;) denote
a state of o; obtained by applying op;; to a state
s; of 0;. [opij(s;)] denotes the response data ob-
tained by op;;(si). opij © opi; means that op
is computed after op;; Here, the conflicting rela-
tion [9] among the operations in 7; is defined as
follows: For every pair of operations op;; and op;;
in 7, opi; conflicts with opix if opi; o opix(s:)
opix © opij(si), [opij(s:)] # lopix o opij(s:)], or
[opi; © opi(si)] # [opik(s:)] for some state s; of o;.
op;; is compatible with op;; unless op;; conflicts
with op;. If op;; and opi; are compatible, both
the same state and the same response data are
obtained independently of the computation order
of op;; and op;x. We assume the conflicting rela-
tion is symmetric. For example, read and write
conflict with one another in a file object. deposit
and withdraw are compatible in the bank object.

2.2 Quality of service (QoS)

Each object o; supports some service. The ser-
vice can be obtained by issuing the operations sup-
ported by o;. Each type of service is characterized
by parameters like reliability, availability, security,
cost, and performance. For example, the reliabil-
ity is represented in terms of MTBF (mean time
between failures). The performance is given in
terms of response time and throughput. Quality
of service (QoS) supported by o; is given by the
parameters. Even if two objects o; and o; support
the same. types of the service, they may provide
different levels of QoS.

The scheme of QoS is given a tuple of attributes
(a1, - .., am) where each a; shows a parameter. Let

dom(a;) be a set of possible values to be taken by
a;, named a domain of a;. For example, for an at-
tribute a; showing MTBF, dom(a;) is a collection
of times. dom(a;) is a set of resolutions in terms
of pixels for a resolution attribution a;. QoS in-
stance of the scheme (ay, ... ay) is given in a
tuple of the parameter values, i.e. {(vy, ..., Um) €
dom(ay) x ... X dom(a,). The values in dom(a;)
are partially ordered by a precedence relation =<
C dom(a;)?. For every pair of values v; and v
in dom(a;), vy precedes vy (vi ¥ wvs) if v; shows

. better QoS than v;. For example, 120 x 100 [pix-

els] < 160 x 120 [pixels] for the resolution. Let
q1 and g; show QoS (v, ..., v1m) and {v2y, ...,
Vam) of the scheme (a4, ..., am), respectively. ¢
is referred to as totally dominate g3 (g1 =.¢2) iff
vy; = vg; for every i = 1, ..., m. Here, let a;(g)
show a value v; of a; in ¢ = (v1, ..., V). Let A
be a subset (by, ..., b) of (a1, ..., am} where by
€ {ay, ..., am} and k£ < m. A projection [g]4 of
gon Ais (wy, ..., wg) where w; = b;(q) for i =
1, ..., k. For every pair of QoS instance q; of a
scheme A; and ¢z of Ay, q1 partially dominates gq
iff a(q1) = a(ge) for every attribute a in A; N As.
¢, subsumes q; (g1 2 ¢2) iff g1 partially dominates
g2 and A; 2 Ap. Let Q be a set of QoS instance.
¢ in @ is referred to as minimal in Q iff there
is no ¢ in @ such that ¢; < q1. ¢ is minimum
in Q iff 1 =< g for every ¢; in Q. ¢ is mazimal
iff there is no ¢z in Q such that ¢; <X ¢z. q is
mazimum in Q iff ¢; < q for every g2 in Q. For
every pair of ¢; and ¢z in @, ¢1 U ¢z and ¢ N
g2 show a least upper bound (lub) and a greatest
lower bound (glb) of ¢ and g; on =, respectively.
g1 U g2 is some QoS g3 in Q such that (1) g1 <X g3
and gz < g3, and (2) there is no g4 in Q where q;
“gXgandg 2¢g 3¢ agNegisgind
such that (1) gz < ¢; and g3 =X gz, and (2) there
;snoq.:ianhereqa <gs 2qand gz 2 g4 2
2

Users require an object to support some QoS
which is referred to as requirement QoS (RoS).
RoS is written in a tuple (V;, ..., V) and V; is
a value of an attribute a;. Here, suppose that an
object o supports QoS ¢ = (v1, ..., ¥m) Where
each v; is a value of a;. Here, let R be a tuple of
QoS values (Vi, ..., Vi). Apg is the scheme of R,
and A is the scheme of q. g subsumes R (¢ 2 R)
iff ¢ partially dominates R and A D Ap. Ifg 2
R, the users cat get enough service from o.

2.3 Multimedia objects

In this paper, we consider multimedia objects.
QoS of o; has two aspects, i.e. QoS obtained from
the state s; and QoS of the operations of 0;. They
are named state QoS and operation QoS, respec-
tively. For example, suppose that there are two
objects o; and o; which have the same video data
with high resolution and low resolution, respec-
tively, which are compressed by MPEG [7]. Here,
the state s; of o; has better QoS than the state s;
of 0;. o; and o; support a play operation which is
realized by the decoder of the compressed state.
If o; and o; support the low-level decoder, o; and
o; support the same QoS by play even if o; has
the high-level resolution video data. Thus, QoS
of o; is given by the state QoS and the operation

QoS of o;.

Each o; supports a collection ; of operations
opi1, ..., opy; for manipulating o;. Let s; denote
a state of 0;. Let Q(s;) denote QoS of the state s;
of 0;. Let Q(op;;) denote QoS supported by op;;
of 0;. QoS of 0; can be viewed through the op-
eration of o;. Here, let Q([op;;(s;)]) denote QoS
viewed through op;;, which is given to be mini-
mum of Q(s;) and Q(op;;). Q(s;:) is defined to
be (Q([opia(s2)), - » Q(lopi, (s1)))- Let (s;) de-
note ([opi1(s:)], ..., [opi;(s:)]), ie. wview of s;.
Q((s:)) shows QoS of o; which the users can view
through the operations. Q((s;)) subsumes Q((s;))
(Q((si)) 2 Q({s;})) iff there is some operation
opii in o; such that Q([opix(s:)]) = Q(lopik(s;)])
for every op;; in o;. Let s; and s| be states of
0. If Q(si) = Q(s;), Q((si)) 2 Q((s;)). Let
mazQ(o;) denote maximum QoS to be supported
by o;, i.e. maximum of Q(s;) for every state's;
of 0;. Let minQ(o;) denote minimum QoS of o;.
Here, minQ(o0;) % Q(s:)= mazQ(o;) for every s;
of 0;.

object o;

= Q(e:)).

‘ » user
Pl Q(opi;}
i R([ops;(s:)] 5

: (s OPik
Qllopue(sily=— 2

Q(s;)

Figure 1: QoS of object.

[Definition] An object o; subsumes 0; (0; 2 o;)
iff Q((s:)) 2 Q({s;}) for every pair of state s; of
o; and s; of 0;. O
Let us consider an example where there are two
multimedia objects movie and hypermovie. The
movie object supports the movie video including
low-resolution image data (120 x 100 pixels) with
_a display operation. The hypermedia object sup-
ports hyper video images of high-resolution (160
x 120 pixels) with various kinds of operations in-
cluding display, stop-motion, and merge. A state
Smovie indicates the low-resolution video image of
some movie m. A state Shypermovie Shows the
high-resolution video image of multiple movies in-
cluding m. Here, Q(3hypermovie) = Q(smavie)- hy-
permedia supports more kinds of operations than
movie. display of hypermedia can display the
high-resolution video image with multi-window
while display of movie can just display one low-
resolution video image on the monitor. Here,
Q([display (shypermedia)]) = Q([display(smovic)])-
hypermovie 2 movie since the hypermovie object
supports higher quality of video image and more
fruitful operations than movie.

Some operations op;; change the state of o;.

Suppose that op;; inserts some data d;; to the
state s; of 0;. If Q(s;) <X Q(di;), dij can be added
to s;. We consider case that Q(s;) = Q(d;;) [Fig-
ure 2(1)].

Since QoS of d;; is worse than s;, d;; cannot
be inserted in s;. However, users can get service
from o; through operations of 0;. If QoS of d;;
viewed by an operation op;; subsumes Q(s;), the
user have no problem even if d;; is inserted in s;

[Figure 2(2)].

opi; -

ONONOF ©

Qi) Q(dy) Q(s:) Q(lopi;(di;)])
(1) 2

Figure 2: QoS viewed through op;;.

In this paper, we consider a multimedia ob-
ject ME where the multimedia data is edited as
shown in Figure 3. ME is composed of subfunc-
tions, play and edit functions. The play func-
tion supports operations which do not change the
state of ME. The edit function supports opera-
tions which change the state. The play function
supports types of operations; multi-story, multi-
aspect, multi-language, multi-voice, and multi-
angle. The edit function supports types of opera-
tions; divide, combine, erase, all-erase, and move.

Multimedia editing (ME) |

‘edit function |

play function

multi-story

: multi-aspect

multi-language

multi-voice

parental-lock

multi-angle

Figure 3: Multimedia editing (ME) system.

Each service is characterized by the following
QoS parameters:

(1) CPU speed: MIPS.

(2) resolution: number of pixels, e.g. 160 x 128
pixels.

(3) number of frames per second: fps.

(4) color: number of colors for each pixel, e.g.
256 colors. :

(5) sound: sampling frequency, e.g. 44.1kHz.
(6) reliability and availability: @~ MTBF and
-MTTR [msec].

(7) security policy: mandatory or discretionary
access control.

(8) accountability: identification and authentica-
tion.

(9) assurance: operational assurance and life-
cycle assurance. :

Let us consider Figure 4 where the play func-
tion is applied to ME. QoS of the play is charac-
terized by CPU speed, color, resolution, and fps.

2 ==

(=

play function

: CPU speed "
color

] t
1 . 1
, resolution ,
i 1

. ‘Figure 4: Multimedia editing (MFE) system.

3 QoS Relations among Operatins
We discuss how operations op;, ..., op; sup-

onrted by an object o are related with respect to
0S.)

3.1 Eqﬁivalency

First, we discuss equivalent operations sup-
ported by o. An operation op; is referred to as
equivalent with op; iff op;(s) = op;(s) and [op;(s))
= [op;(s)] for every state s of o [Figure 5(1)]. That
is, op; and op; not only output the same data but
also change the state of o to the same state. For
example, suppose that there are two versions old-
display and new-display of the display operation
supported by the movie object. The new version
new-display can display the same video image as
the old-display operation while new-display can
display faster than old-display. Here, new-display
is equivalent with old-display because they output
the same image data and do not change the state
of movie. However, they support different levels
of QoS, i.e. new-display is better than old-display.
We define a novel equivalent relation among the
operations with respect to QoS supported by the
operations.

[Definition] An operation op; is QoS-equivalent
(Q-equivalent) with op; iff Q((opi(s))) =
Q((op;(s))) for every state s of an object 0. O
That is, op o op;(s) and op o op;(s) supports
the same view for every operation op [Figure
5(2)): op; is Q-equivalent with op; if Q({opi(s)))
= Q({op;(s)))-

Let R be RoS which an application requires

an object o to support. The application does not
mind which operation old-display or new-display

(1) equivalency (2) Q-equivalency

Figure 5: Equivalent operations.

is used if the user would like to see the movie in-
dependently of the display speed. Two operations

are considered to be equivalent if they support
QoS subsuming R even if Q(old-display(smovic))
Q(new-display(smovic))-
[Definition] An operation op; is RoS-equivalent
(R-equivalent) with op; on R iff Q({op:i(s))) N
Q(opi(s))) 2 R. O
3.2 Compatibility

Next, we discuss in which order two operations
op; and op; supported by the object o can be com-
puted in order to keep the state of o consistent.
According to the traditional theory [1,9], op; and
op; conflict if the result obtained by computing
op; after op; is different from op; after op;. op;
is compatible with op; unless op; conflicts with
op; [Figure 6(1)]. For example, suppose a movie
object m is composed of an advertisement and
a body. m is manipulated by the delete opera-
tion which removes the advertisement part from

m. Even if the user sees the movie m after the
advertisement part of m is removed by delete, the

user does not care the difference between the orig-
inal version of m and the updated version if the
user is interested only in the content body part of
m. That is, the updated version of m supports
the same level of QoS as the original version of m.

We now define a QoS-compatible relation
among the operations op; and op;.
[Definition] An operation op; is QoS-compatible
(Q-compatible) with op; iff Q((op; o op;(s))) =
ngpj o op;(s))) for every state s of an abject
o.

(2) Q-compatibility

Figure 6: Compatible operations.

Unless op; is Q-compatible with op;, op; is re-
ferred to as QoS-conflict with op;. For example,

suppose that an operation delete removes some

frames from the movie. The movie can be seen
only by the display operation with the low-ievel

decoder. Here, the users can see the movie with
the same quality even after delete is applied to the
movie. Here, delete and display are Q-compatible.
The compatibility relation among the opera-
tions op; ang op; depend on the requirement QoS
(RoS) R required by the user.
[Definition] An operation op; is RoS-compatible
(R-compatible) with op; on R iff Q({op;(s))) N
Q((op; © opi(s))) 2 R, Q({opi o opj(s))) N
Q((op;(s))) 2 R, and Q((op; © op;(s))) N Q({op;
oopi(s))) 2 R. O : ‘
Suppose that a user is not interested in how
colorful the movies are. Let update be an op-
eration to change a movie from a colored ver-
sion to a monochromatic one. Suppose that the
movie object supports a colored movie m. The
user sees the colored movie m by the operation
display, i.e. [display(m)]. If m is changed by
the update operation, the user sees the monochro-

matic version of m. Since the user is not inter-
ested in the color of m, both versions are con-

sidered to satisfy the requirement QoS (RoS) re-
quired by the user. Hence, Q([display(m)]) n
Q([update o display(m)]) 2 R and Q(display o up-
date(m)) = Q(update o display(m)). display and
update are R-compatible. However, they are not
Q-compatible because Q([update o display(m)]) #
Q([display(m)]).

4 Compensation

Each object o0; may be faulty. We discuss how
the object o; recovers from the fault. In the tra-
ditional system, o; is rolled back to the previous
consistent state saved in the log I; at the check-
point ¢; if o; is faulty. If o; is faulty, o; is rolled
back to ¢; where the state stored in I; is restored in
o; and then o; is restarted. Many protocols [6] for
taking the consistent checkpoints and restarting
the processes are discussed so far.

Another way is to compute some operations to
remove the effect done by the operations com-
puted. op; is a compensating operation of op;
if op; o op;(s) = s for every state s of o [8,9].
Let op; denote a compensating operation of op;.
Let s’ be a state obtained by .computing op; on
a state s of o. Here, o can be rolled back to s if
op; is computed on s’. For example, append is a
compensating operation of delete. withdraw is a
compensating operation of deposit. Suppose that
o computes a sequence of operations op;, .. ., 0p,,.
In order to undo the operations op;, ..., opn, a
sequence of the compensating operations opn, ...,
op; can be computed. That is, op o opy o ... o
OPm © 0P © ... 0 0P = op for every operation op.
Here, 0pm ... o op; is a compensating sequence
of op; o ... 0 opp,. .

A pair of states s and s’ of 0. may be considered
to be the same from the application point of view
even if s # s'. For example, suppose there are two
accounts A and B. First, A=100and B=50ata
state s;. Suppose that A = 110 and B = 40 at s,
after A and B are manipulated. If the application
is only interested in the total amount of A and B,
3 is considered to be equivalent with s;. Thus,
two states s and s’ of o are equivalent (s = s')

iff the application considers that s’ is the same as
s. op; is a semantically compensating operation
of op; if op; o op;(s;) = s for every state s of
0 [13]. Here, it is noted that op; o op;(s) may not
be s. op; denotes a semantically compensating
operation of op;. For example, an operation t;
transfers money ay from an account A to B. ¢,
transfers money b; from B to A. For every state s,
t; o ty(s) = sif ay = by. Here, ¢; is a compensating
operation £;. As presented here, suppose that the
application is only interested in the amount of A
and B. The amount of money in A and B is not
changed after ¢; and ¢, are applied in any order,
but the states obtained are different if a; # &;.
Here, t; is a semantically compensating operation
of ty,ie. t; oty(s) =s.

"Here, suppose that a state 3 is obtained by ap-
plying an operation op;; to a state s; of an object
o. Each state s, of o supports QoS Q(s;). Let us
consider how to roll the object o back to the pre-
vious state s; from s;. One way is to compute the
compensating operation op; of op; on s, since op;
0 0p; (31) = 81. Here, suppose that there exists an
operation op; such that op; o op;(s;1) = s3 where
51 # 53 but Q(s3) 2 Q(s1). s3 is not the same as
s1_but supports better QoS than s;. Here, s, is
referred to as QoS-equivalent with s;.
[Definition] An operation op; is referred to as
QoS-compensating (Q-compensating) operation of
op; iff Q({op; o op;(s))) = Q((s)) for every state
s of an object 0. O
Let op; denote the QoS-compensating operation
of op; [Figure 7). op; is a kind of the semantically
compensating operation of op;, i.e. op; is op;.

. op;
=
Q((s)) = Q((s2))

(2) Q-compensating

(1) compensating

Figure 7: Compensating operation.

Let us consider the multimedia object ME as
shown in Figure 8. Here, suppose that there are
two movies A and B where it takes two hours to
play each of A and B. This state is s;. Suppose
that a movie C is obtained by combining A and
B through the combine operation. Here, the state
is referred to as s,. Then, C is divided into two
movies A’ and B’ by the divide operation. The
length of A’ is one hour and half while B’ is two
hours and half. The state is named s3. A is com-
posed of some advertisement and the contents of
the movie. A’ includes only the contents of A.

The advertisement of A is attached in B'. B’ is
also considered to be the same as B. Here, sg'is

QoS-equivalent with s; since Q((s3)) = Q((sy)).
givide is a QoS-compensating operation of com-
ine.

In Figure 8, suppose one movie C is obtained
by combining the movies A and B. Suppose the
multimedia object ME supports an operation di-
vide2 which divides C into three parts A", B",

peeseee 81

i 2hours 2 hours

[+] (2]
P S
£1.5 hours 2.5 hours

] gr]

Q-compensating operation

Figure 8: Q-compensating operation.

and AB. A" and B’ are the content body parts of
A and B, respectively, which are monochromatic.
AB includes the advertisement parts of A and B.
A state including A", B”, and AB is named s4.
s; and s4 are not the same. Furthermore, A and
B support the colored movie but A” and B" sup-
port only the monochromatic one. That is, A 2
A" and B D B'". Here, suppose that a user has
a requirement QoS (RoS) R that it is all right
for the user to see the monochromatic one.- Here,
Q((s4)) 2 R [Fig. 9.

[Definition] An operation op; is a RoS-
compensating (R-compensating) operation of op;
on R iff Q({op; o op;(s))) N Q((s)) 2 R for every
state s of an object 0. O

divide2 is an example of the R-compensating op-
eration of combine.

e 4
: monochromatic

: R-compensating operation

‘Figure 9: R-compensating operation.

5 Concluding Remarks

This paper has discussed how to make the dis-
tributed system flexible with respect to QoS sup-
ported by the objects. We have discussed the
novel equivalent and conflicting relations among
the operations on the basis of QoS. We have also
discussed the compensating method to recover
from the fault of the object. The object recovers
from the fault by transiting to the state equivalent
with the previous consistent state with respect to
QoS by the compensating operations.

References
[1] Bernstein, P. A., Hadzilacos, V., Goodman,
N., “Concurrency Control and Recovery in
Database Systems,” Addison-Wesley Pub-
lishing Company, 1987.

[2] Birman, K., P, Kenneth., and Renesse, V.
Robbert,, “Reliable Distributed Computing

3

{4

[5

—_—

6

-~

1

(8

[9

—

(10]

(11]

[12]

(13]

(14]

(18]

with the Isis Toolkit,” JEEE Comp. Society
Press, 1994. i ‘

Budhiraja, N., Marzullo, K., Schneider, B.
F., and Toueg, S., “The Primary-Backup
Approach,” Distributed Computing Systems,
ACM Press, 1994, pp.199-221.

Cambell, A., Coulson, G., Garcfa, F., Hutchi-
son, D., and Leopold, H., “Integrated Quality
of Service for Multimedia Communication,”
IEEE InfoCom, 1993, pp.732-793.

Campbell, A., Coulson, G., and Hutchi-
son, D., “A Quality of Service Architecture,”
ACM SIGCOMM Computer Communica-
tion Review, Vol. 24, 1994, pp.6-27.

Chandy, K. M., Misra, J., and Haas,
L. M., “Distributed Deadlock Detection,”
ACM TODS, Vol.1, No.2, 1983, pp-144-156.

Gall, D., “MPEG: A Video Compres-
sion Standard for Multimedia Applications,”
Comm. ACM, Vol.34, No.4, 1991, pp.46-58.

Garcia-Molina, H. and Salem, K., “Sagas,”
groc. of the ACM SIGMOD, 1987, PP.249-
59.

Korth, H. F., Levy,E., and Silberschalz, A.,
“A Formal Approach to Recovery by Com-
pensating transactions,” Proc. of the VLDB,
1990, pp.95-106.

Sabata, B., Chatterjee, S., Davis, M,
and Syidir, J. J.,, “Taxonomy for QoS
Specifications,” Proc of the IEEE Com-
puter Society 3rd International Workshop on
Object-oriented ‘Real-time Dependable Sys-
tems (WORDS ’97), 1997, pp.1-10.

Schmidt, D. C., Gokhale, A. S., Harri-
son, T. H., and Parulkar, G., “A High-
Performance End System Architecture for
Real-Time CORBA,” IEEE Communica-
tions Magazine, 1997, pp.72-77.

Schneider, B. F., “Replication Management
using the State-Machine Approach,” Dis-
tributed Computing Systems, ACM Press,
1993, pp.169-197. -

Takizawa, M., and Yasuzawa, S., “Uncom-
pensatable Deadlock in Distributed Object-
Oriented Systems,” Proc. of Int’l Conf.
on Parallel and Distributed Systems (IC-
PADS92), 1992, pp.150-157.

Tanaka, K., and Takizawa, M., “Distributed
Checkpointing Based on Influential Mes-
sages,” Proc. of the 4th IEEE Int’l Conf. on
Pearallel and Distributed Systems (ICPADS-
96), 1996, pp. 440-447.

Yoshida, T., and Takizawa, M., “Model of
Mobile Objects,” Proc. of the 7th Int’l Conf.
on Database and Ezpert Systems Applica-
tions (DEXA’96), 1996, pp. 623-632.

