TVF AT 4 THBELHBOE 89-5

(1998. 6. 3)

Recovery Protocol for Hybrid Checkpointing

Hiroaki Higaki, Kojiro Shinchi and: Makoto Takizawa
Department of Computers and Systems Engineering
Tokyo Denki University

Information systems consist of multiple mobile stafions and fixed stations communicating with each
other. Mission critical applications are required to be executed fault-tolerantly in these systems. How-
ever, mobile stations support neither enoufg volume of storage and processing power nor enough capacity

or

of battery to do reliable communication

a long period. Moreover, wireless communication channels -

are less reliable. Hence, the communication channels with the mobile stations are often disconnected.
Therefore, it is difficult for multiple mobile stations to take checkpoints synchronously since the commu-
nication channels with the mobile stations may be disconnected even during taking the checkpoints. We

vhave‘proiosed hybrid checkpointing where checkpoints are taken asynchronously by the mobile stations

and sync

ronously by the fixed stations. In addition, the mobile stations record messages for getting:

local states consistent with the checkpoints taken by the fixed stations. In this paper, we popose the -
method how the mobile stations record the messages, gather the messages stored in the stable storages .
distributed in multiple mobile stations, and recompute the messages in the consistent order.

@%%1v7$47b@tbwuﬁﬂujﬁb:w
| B I P ATHE R W
{hig, koujiro, taki}@takilab.k.dendai.ac.jp
RR B RS TS TER

BERK L BEEMHEAIR v 7 — 710K o THESE S N TR S A BEEY X7 AR —REIZ%)
Dohl, cDESLEETT I r— 8 YAREEICEFENIERIE T o Twd, cET, EEH

DERPLLED Ry PI—-VBREFHRIC, Foy ZHL P YAT - Mok oTIhEEBRTHFEIR
RENTEL, L2AH, Fxy 7BV = F 2 BNT A LOORELRE FHIHOC LVFTIZY,
BEFCAUFIHEND Z EBH DL, Lo BERKOBHENLDIC, ThODFEREM TS LA
BThoto ARCNETIC, BENKEIAMRF =y 784y P70 b2, BEGREFERMPAS = >
BRA Y FTOINFEFRTRACREEF 2y 7 RA Y PO PINEREL TS, FHATE, 2O
ATy HAY TR PINEBNT, FNEAOBEEES, BERRIBRELLT vy I RI VP L
CERODIRELWET 0, 1) BER Ay - TEBER/ICRET 5 HE, 2)) NYPERE
A EEC, EROREEEICHRRES N Ay - VEERTAHE, JRFENLAVE-VEELY

WECEREGT A, FRET 5o

‘1 Imtroduction

. According to the advances of communication
and computer technologies, many kinds of mobile
stations. like notebook computers and personal
data assistants (PDAs) are widely available. Intel-
ligent Transport Systems (ITSs) with mobile com-
munications are now being developed. New com-
putation paradiﬁms like nomadic computing [3]
are also proposed. :
" A mobile system is composed of fized stations
and mobile stations interconnected by communi-
cation networks. The fixed stations are located
at the fixed locations in the network: The mobile
stations move from one location to another in the
network. The network is divided into a number
. of cells, i.¢:' mobile stations move from one cell to
“another. There is a mobile support station (MSS)

* in each cell,. A mobile station communicates with

another station only through the MSS. The MSSs
. and the fixed stations are interconnected by the
high-speed network. The network addresses of the
" mobile stations are automatically assigned by us-
" ing DHCP' (Dynamic Host Configuration Proto-
col) [7]. The connections with the mobile stations
can be automatically maintained by the mobile
protocols [14,18, '19} even if the mobile stations
" move among the cells. : Tt

The mobile stations sometimes move out of the
cells and do not have so much capacity of battery
that the communication with the other stations
can be continued for a long period. Hence, the
communication channels with the mobile stations’
may be disconnected. However, some applications
are computed on mobile ‘and fixed stations and
are required to be continued even while the com-
munication channel is disconnected. Many pa-
pers [4,9,11] discuss how to handle the discon-
nected operations.)

The checkpoini-restart [5, 6,10,12, 17,-20-22]

_is one of the well-known methods to realize re-

liable distributed systems. Every station s; takes
a checkpoint ¢; where the local state information
of s; is stored in the stable storage. If some station
fails, .9; restarts the computation from ¢;. A set
of checkpoints taken by all the stations is required

 to be consistent [6]. A fixed station F; can eas-

ily take checkpoints consistent with the others by
using synchronous distributed cheéckpointing pro--
tocols [6, 8,12;17,20] since F; can communicate

- with each other by using the high-speed network:

and have enough volume of stable storage to store;

- the state information. Papers [13,16] discuss how

the mobile stations M; take the checkpoint cas;:

synchronously in the stable storage. However, it
is difficult for M; to take cps; due to the lack of sta-
ble storaf_ge and battery capacity. Moreover, it gets
more difficult for F; and M; to take checkpoints
synchronously if the communication channels be-
tween M; and the MSSs are often disconnected.

‘We assume that every MSS S; is equipped with
enough volume of stable storage to store the local
state information of all the mobile stations in the
cell of S;. M; takes cps, by storing the local state
information in S;. M; may fail to take cpy; due to
the lack of battery capacity or the movement to
the outside of the cell. If the checkpoints are taken
synchronously, all the stations have to give up to
take the checkpoints if some mobile station fails to
take the checkpoint. Hence, asynchronous check-
pointing protocols [5, 10,21, 22] are preferable for
the mobile stations. Papers {1,15] propose the mo-
bile asynchronous checkpointing protocols. Here,
the protocol overhead is high since S; is required
to take a new checkpoint of M; each time a mes-
sage is transmitted between them. In this paper,
we newly propose a hybrid checkpointing protocol
where the checkpoints are asynchronously taken
by the mobile stations while synchronously by the
fixed stations. Here, a checkpoint cps, of M; is
taken only when M; sends a checkpointing request
to 5;. Hence, the number of accesses to the stable
storages of the MSSs can be reduced. Therefore,

the hybrid checkpointing protocol makes the mo- .

bile systems so reliable that the mission critical
applications can be computed with less overhead.
The rest of this paper is organized as follows.
In section 2, we show tﬁe system model. In section
3, we overview the hybrid checkpointing protocol.
In section 4, the recovery protocol for the hybrid
checkpointing protocol is discussed.

2 System Model ,

A distributed system § = (¥, £} is composed of
multiple stations ¥V = {s1,...,8,} interconnected
by communication channels £ C V2. The compu-
tation is realized by cooperation of multiple sta-
tions communicating witg each other by exchang-
ing messages through the channels. (s;,s;) € £
indicates a channel from s; to s;. We assume
that each channel (s;, 3;) is reliable and bidirec-
tional. In s;, two kinds of events occur: commu-
nication events and local events. A local state of
8; is assumed to be changed when a communica-
tion event, i.e, a message-sending event s(m) or
a message-receipt event r(m} of a message m, oc-
curs. Hence, a local state of s; is determined by
the initial state and the sequence of communica-
tion events occurring in s;.

In a mobile computing system AS, there are
three kinds of stations: fized stations Fu,..., Fy,
mobtle stations M,,..., M,, and mobile support
stations (MSSs) Si,..., S, as shown in Figure 1.
Every F; is connected at the fixed location of the
network. FBach M; moves from one location to
another, If M; is in a cell supported by S;, M;
communicates with S; by using the wireless or ca-
ble communication channel. S; forwards messages
from M; to the destination stations and delivers
the messages from the other stations to M;. The
connection between M; and another station is au-
tomatically maintained by the cooperation. of the

MSSs even if M; moves among the cells [14,18,19].
The fixed stations and the MSSs are intercon-
nected by the high-speed network.

R

M 4 : mobile station|
Fji: fixed .station
Si: mobile support station

wireless cel

Figure 1: Mobile computing system.

‘Bach M; does not have so much capacity of bat-
tery that M; can continue to communicate with
an S; for a long period. Hence, M; often discon-
nects the connection with another station in order
to reduce the power consumption of the battery
while the applications are being computed in M;.
Furthermore, since M; has neither enough com-
ﬁutation power nor enough volume of storage like

ard-disks, it is difficult for A; to take checkpoints
by itself. In this paper, we discuss a way where
a mobile station stores the local state information
in a stable storage of an MSS at a checkpoint and
messages sent and received by the mobile station
after tie checkpoint are also stored in the MSS to
realize consistent recovery.

3 Hybrid 'Checkpointin
3.1 Overview :

The computation in MS is realized by coop-
eration of mobile stations My,..., My, and fixed
stations Fy,..., Fy. BEach M; is in one of the cells
supported by MSSs Si,...,5;. Here, M; is sup-
ported by S; and S is a current MSS of M;. The
stations exchange messages by using the mobile
communication protocol [14,18,19], %‘hat is, each
stations can communicate with the others without
being conscious of the locations of the stations.

The advantage of the synchronous checkpoint-
ing protocols is that the computation can be

. restarted without domino effect. However, it is

difficult for M; to take cps, synchronously. Here,
we propose a_hybrid checkpointing protocol which
has the following properties: :

e The fixed stations take local checkpoints by
using the synchronous checkpointing proto-
col. A collection of the checkpoints taken by
the fixed stations is referred to as a coordi-
nated checkpoint. ' .

e The mobile stations take local checkpoints by

: us%ng the asynchronous checkpointing proto-
col. ; .

The state information of M; at cpy, is stored in the
stable storage of S; which is the current MSS of
M;. In addition, the messages sent and received
by M; are also stored in the stable storage of §;.
M; fails to take cpg, if the channel between B

“and S; is disconnected owing that Af; moves out

of the cell or the battery of M; is exhausted during

. taking cpy;. Thus, M; takes cpr; when M; surely

could take cpr,. That is, M; takes cps, only if
M; does not move out of the cell and has enough
capacity of battery to take cps,. Therefore, #;

asynchronously takes car,, i.e. independently of
the other stations.

3.2 Checkpointing protocol

In the hybrid checkpointing protocol, the fixed
stations Fi,..., Fy synchronously take a coordi-
nated checkpoint CC = (cp,,...,¢p,) while the
mobile stations My, ..., M, asynchronously take
local checkpoints ¢as,;...,car,,. Bach M; has to
restart the computation from a state consistent
with CC. However, cp, is not always consistent
with CC because M; takes ¢y, independently of
the other stations. Hence, M; restarts the com-
putation by using the message log [2]. Here, the
messages sent and received after ¢y, by M; are
stored in the message log in the stable storage of
the current MSS 5;. If M; restarts the compu-
tation, M; recomputes the messages stored in the
message log to get the state consistent with CC.

. Suppose M; is supported by S7. Since-every
message sent and received by M; is transmitted
via S, the message can be stored in the stable
storage of S! even if M; has no stable storage.
A checkpoint agent process 4] in S records mes-
sages sent and received by M; in the message log
mi] on behalf of M;. Moreover, 4] takes the lo-
cal checkpoint cpy; of M; by recording the state
information in the state log sl if M; requests A7
to take car,. :

Fy, ..., F; take CC by using the following pro-
tocol proposed in [12]: ’ :
[Coordinated Checkpoint CC]

‘1) A coordinator station CS sends a request

message Creg to Fy,...,Fr and 8y,...,5,.

2) On receipt of Creg, each F; and S; take a ten-

-+ tative checkpoint tcp, and ics,, respectively,

- -and send back a reply message Crep to CS..

3) If.CS receives Creps from all the stations, C'S

sends a final message Cfin to Fy,...,Fy and

Slaﬂ')sa-g . .) st
4) On receipt of Cfin, each F; and S; makes tc,
and tcs; permanent, i.e. cp; and cg;, respec-
tively. . :
In order for CC to be consistent, each station sus-
pends the computation and the transmission of

application messages while the station has a ten-
tative checkpoint.

Next, we discuss how M; takes cyy,. Here, sup-
pose M; is supported by 57. The checkpoint agent
A} in S! takes a fentative local checkpoint ey,
independently of the othér stations. The state in-
formation required for M; to restart the computa-
tion from écyy, is carried by a tentative checkpoint
request message T'Creg: On receipt of T'Creqg, Al
stores the state information of M; in the tentative
state log tsl! in the volatile storage of 7.
[Tentative checkpoint teu, in A7) .

1) M; sends TCreq to A]. TCreq carries the
state information SI; of M;.

2) On receipt of T'Creq, Al takes tcp; of M; by
storing SI; in tst. If some checkpoint agent

— 27—

AF (k < j) has taken another tentative check-

point tchy, of M;, Al requests A¥ to discard
tehy, - '

Let (A},..., Af) be a sequence of checkpoint _

agents where A} has tcp, and Af is the current

checkpoint agent of M;. If Sf receives Creg, A}

£

makes fcys, a permanent checkpoint ¢y, by mov-
ing the state information from ¢si} in the volatile
storage to sl} in the stable storage of S}. In ad-
dition, 4% (1 < k < ¢) moves the messages from
tml} in the volatile storage to ml¥ in the stable
storage of S¥.

[Permanent checkpoint cy, in AZ]

o If S} receives Creq, A} moves the state infor-

mation from tsi} to si} before 5} sends back
Crep.

e If S (k # 1) receives Cregq, A* moves the
messages from tmi¥ to mi} before S* sends
back Crep. :

If there is another permanent checkpoint cj,
when cyy; is taken, cj, and the messages for the

recovery can be discarded from the stable storage
after taking ey, s .

There are three cases with respect to in which
order A} receives Creq and TCreq messages:

1) I Az: receives TCreq before Creg, i.e. Af takes
tea; before receipt.of Creq, tepr; is changed

to cpr,. That is, the messages in tml{ and
the state information in tsf! in the volatile
storage are stored in mlf and sl;i in the stable
storage, respectively [Figure 2].

2) If A{: receives T'Creq and T'Creq’ successively,

C e, A{ takes tcys, on receipt of TCreq and
receives TCreq’ without receiving Creg, tcar;
is discarded and A} takes another tenta-
tive checkpoint tcj;. The mes:ié;ges‘ in imlg‘
recorded between tcyy, and tc}u‘. are discarded
[Figure 3].. . s .

3) If A'Z receives Creq and Creg’ successively, i.e.
AZ: takes cp; on receipt of Cregq and receives
Creq’ without receiving T'Creq, cp,- is still a
permanent checkpoint.. The messages in tml{
are stored in ml [Figure 4].

Figure 2: TCreq and. Cregq (1).

The hybridr'checkj;ointing protocol has the fol-

Figure 3: TCreq and Creg (2).

Al M,
TCreq

Gui ,
creg||tmli
=9

creq|\tml1 73
\ 1

Figure 4: TCreq and Creg (3).

lowing properties:
e Each M; has one permanent checkpoint ¢y,
consistent with the most recent CC.
o Each M; has at most one tentative checkpoint
te; -

4 Recovery Protocol
4.1 Message ordering for recovery

Suppose AZ: receives two messages m and m’
destined to M; in this order. M; receives m and
/' forwarded by Al in the same order. Next, sup-

pose M; gends m and /' in this order. AZ: for-
wards m and m' to the destinations in the same
order as M; sends. Then, suppose M; sends m/
after receipt of m. Al forwards m to M; before

receipt of m’. In these cases, Al can keep the
sequence of the messages exchanged with M; in
mil. However, if M; sends m/ before receipt of m,
Az may receive m’ after sending rn as shown in

Figure 5. This means that AZ-' cannot know the

occurrence sequence of the communication events
in M;. Hence, if M; restarts the computation from

cyr; and recomputes the messages in mil, the state
of M; may be inconsistent with CC. In order that

Al records the messages in the same order as han-
dled in M;, each message m carries two sequence
numbers m.seq and m.ack. Here, let m.sender
and m.receiver mean the sender and receiver of
m, respectively. ' ‘
e m has a unique sequence number m.seq. Ifm
is sent after a message m/, m.seq > m'.seq.
o m.ack means that m.s receives every message
m' where m'.seq < m.ack. That is, m.ack 1s
the same as m’.seq of a message m’ that is the

Figure 5: Crossing messages.

most recently received message by m.sender.

If Af: sends or receives messages m and ™’ in
this order, m and m' are ordered in mi} according
to the following ordering rules:

[Ordering rules]

e If m and m’ are sent by the same sender, ie.

m.sender = m’ .sender, m precedes m’.

e If m and m' are sent by different senders‘
ie. m.sender # m'.sender, m precedes m’

if m.seq < m'.ack. Otherwise, m' precedes
m

In Figref 5, m.seq > m'.ack because M; sends
m' before receipt of m. Hence, m' precedes m

although A’ sends m before . Thus, A} stores
m/' before m in ml:f and a sequence of messages in
mil] is the same as M; handles the messages.
‘Suppose that M; is initially supported by st
and moves from S¥ to S¥*' (1 <k <¢). Sfis
the current MSS of M;. In each S}, there exists
a checkpoint agent A? of M;. (4},...,4f) isa
sequence of checkpoint agents and Af is a cur-
rent checkpoint agent of M;. Each A¥ stores the
messages exchanged with M; in-a feniative mes-
sage log tmlf in the volatile storage of SE. Hence,

a sequence of messages that M; has sent and re-
ceived are stored in a sequence of the message logs

(tmi},... , tmlf).

4.2 Message logging for recovery

In (4},..., Af), suppose A} and A} (1 <t<c)
have cy, and fcpg, respectively. That is, Al
and A! receive TCreq from M; and some A}
(1 < w< t) receives Creg. Since A? (1 < v < u)
stores the messages exchanged with M; in mlY,

M; gets a state consistent with CC by computing
the messages in ml? from cypy; at which the state

information is in sl}. The messages forwarded by
A (u < k < c) are stored in tmlf. When tcy,
taken by A!is changed to cyy; on receipt of Creg,
some messages in tmlf (u < k < t) can be dis-
carded since these messages never be recomputed

for restarting the computation of M; from cay;.
Here, we discuss which messages have to be stored

in the stable storage of 4].

Suppose A! sends a messages m to M; while
receiving T'Creg and Creq. There are the following
four cases: ’ ' o

1) A} sends m after receipt of T'Creq and before
receipt of Creg likem; in Figure 6. 3; recom-

- 928 —

Gu

/
%{&. % .
x

Figure 6: Logging m from Az to M;.

putes m if M; is restarted from cps;. Hence,
m is stored in m# in the stable storage on
receipt of Creg.

2) Al sends m after receipt of Creq and before
receipt of T'Creq, and M; receives m before
sending T'Creq like my in Figure 6. Since M;
restarts the computation from a state consis-
tent with CC without m, m is discarded.

3) A! sends m before receipt of Creg, and M; re-
ceives m after sending T'Creq like mg in Fig-
ure 6. M; recomputes m if M; is restarted
from cpr,. Hence, m is stored in mi in the
stable storage on receipt of Creg. In addition,
m has to be recorded for M; to restart the
computation from tcas, if ey, is changed to
be permanent. Thus, m is still in ¢ml;; in the
volatile storage even after receipt of T'Creq.

4) Al sends m after receipt of Creg and before
receipt of TCregl,(and M; receives m after
sending TCreq like my in Figure 6. Though
M; restarts the computation from a state
consistent with CC without m, m has to be
recorded for M; to restart the computation

" from tcpy; if tem; is changed to be perma-

nent. Thus, m is recorded in tmi] even after

receipt of T'Creq. ’
A messages which can be discarded is referred to
as insignificant. When Al forwards m to M;, A}
cannot identify which case from 1) to 4) m shows.
Thus, A} records every message in tmil in the
volatile storage of S7. If A receives T'Creq and m
is insignificant, 4] discards m from tmi}.

Next, suppose Af;' receives a messages m from
M; while receiving T'Creq and Creg. There are
following two cases: .

1) A} receives m after receipt of TCreg and
before receipt of Creq like my in Figure 7.
M; recomputes m for restarting from cyy;.
Hence, A stores m in mi} in the stable stor-
age on receipt of Creg.

2) A! receives m after receipt of Creq and be-

fore receipt of T'Creq like my in Figure 7.
If m.ack < my.seq where m; is the message

most recently sent by 4} to M; before receipt
of Creg, M; recomputes m for restarting from
cpr; Hence, Al stores m in mi! in the stable
storage on receipt of Creq. Otherwise, m is

—99—

Gu

/
m
te,)

N,

Figure 7: Logging m from M; to Aﬁ

discarded. ,
The procedure for logging the messages in AZ:
is as follows:)
[Message logging in 4]]

e On sending m to M;, m is stored in tml{ .

@ On receipt of m from M;, m is stored in tmlf:
if some A% (k < j) has tcy,. X no AF has
tenr, and m.ack < my.seq where my is the
message most recently transmitted from A7
to M; before receipt of the most recent Creg,
m is stored in ml‘,’; . Otherwise, m is discarded.

e On receipt of TCreq, m € tml{ transmitted
from A{: to M; is removed from tml;; and
discarded if m.seq > T'Creq.ack.)

e On receipt of Creg, all the messages in tml]
are stored in ml! .

4.3 Restart protocol for recovery

We discuss how to restart the fixed stations
and the mobile stations if some station is faulty.
Fy,..., Fy restart the computation from CC by us-
ing the restart protocol in [12]. :
[Restarting F; from cp, € CC]

1) A coordinator station CS sends a request
messages Rreg to Fy,..., Fy and Sy,...,5;.

2) On receipt of Rreg, each F; and S; send back
a reply message Rrep to CS. :

3) If C'S receives Rreps from all the stations, CS
sends a final messages Rfin to Fy,...,Fy and

Styei.y S

4) On receipt of Rfin, each F; and S restart the

computation from cp; and cg;, respectively.
In order to restart My, ..., M, from states con-
sistent with CC, the mobile agents have to coop-
erate. Let (Al,..., Af) be a sequence of check-
point agents of M; where A} has cpy;, some A}
(1 <t < c)has tcy,, and Af is the current agent.
That is, A} and A} receive TCreg and some AY
(1 € u < t) receives Creg. The messages trans-
mitted between M; and AY (1 < v < u) are stored
in ml} in the stable storage and recomputed by

M; to get a state consistent with CC. Here, the
following restart protocol is used:

[Restarting M; from cpy,]
1) If Sf receives Rreq, A{ sends a state log re-
quest message SLreg to Al anda message log

request message MLreq to every A7 (1 < v <

u).

2) On receipt of SLreg, Al sends A back a state
log reply message SLrep containing the state
information at ¢; stored in si}.

3) On receipt of MLreg, each AY sends Af back a
message log reply message MLrep containing
the messages stored in mlY.

4) Af sends a tentative state log cancellation re-
quest message SLCreg to Al

5) On receipt of SLCreq, Al discards tcy,, i.e.
discards the messages in tslf, and sends Af
back a tentative state log cancellation reply
message SLCrep.

6) Af sends a message log cancellation request
message ML Creq to every A¥ (u <k <c).

7) On receipt of MLCreq, A} discards the mes-
sages in ¢ml¥ and sends Af back a message
log cancellation reply message MLCrep.

8) On receipt of SLrep, MLreps, SLCrep and
ML Creps sent at steps 2), 3), 5) and 7), re-
spectively, Af forwards them to M;.

9) On receipt of the messages sent at step 8), M;
gets a state consistent with CC by using the
state information at cyy, carried by SLrep and
recomputing the messages carried by MLreps
in the order discussed in subsection 4.1.

5 Concluding Remarks

It is significant to discuss how to make the mo-
bile systems more reliable and available. In or-
der to realize the reliable mobile computation, we
have discussed how to take the checkpoints and
restart the computation in the mobile stations and
the fixed ones. In this paper, we have proposed
the recovery protocol for the hybrid checgpointing
protocol where the mobile stations asynchronously
take the local checkpoints and the fixed ones syn-
chronously take the local checkpoints. We will
evaluate the proposed protocols in a simulation
and an implementation of a prototype system.

References

[1] Acharya, A. and Badrinath, B.R., “Check-

pointing Distributed Applications on Mobile

Computers,” Proc. of the 3rd International

Conference on Parallel and Distributed Infor-

mation Systems, pp. 73-80 (1994).

Alvisi, L., Hoppe, B., and Marzullo, K.,

“Nonblocking and Orphan-Free Message Log-

ging Protocols,” Proc. of the 23rd Interna-

tional Symposium on Fault-Tolerant Comput-

" ing, pp. 145-154 (1993).

[3] Bagrodiu, R., Chu, W.W., Klienrock, L.,
ang Popel, G., “Visim, Issues, and Archi-
tecture for Nomadic Computing,” IEEE Per-
sonal Communication, Vol. 2, No. 6 (1985).

[4] Barbara, D. and Imielinski, T., “Sleepers and
Workaholics: Caching Strategies in Mobile
Environments,” Proc. of ACM SIGMOD, pp.
1-12 (1994). '

[5] Bhargava, B. and Lian, S.R., “Independent
Checkpointing and Concurrent Rollback for
Recovery in Distributed Systems,” Proc. of
the Tth International Symposium on Reliable
Disiributed Systems, pp. 3~12 (1988).

—
N
[

[6] Chandy, K.M. and Lamport L., “Distributed
Snapshots: Determining Global States of
Distributed Systems,” ACM Trans. on Com-

wler Systems, Vol. 3, No. 1, pp. 63-75
§985).

[7] Dromos, R., “Dynamic Host Configuration
Protocol,” RFC 1541{‘1993).

[8] Higaki, H., Sima, K., Tanaka, K., Tachikawa,
T. and Takizawa, M., “Checkpoint and Roll-
back in Asynchronous Distributed Systems,”
Proc. of the 16th IEEE INFOCOM, pp. 1000~
1007 (1997).

[9] Huang, Y., Sistla, P., and Wolfson, O., “Data
Replication for Mobile Computers,” Proc. of
ACM SIGHMOD, pp. 13-24 (1994).

[10] Juang, T.T.Y. and Venkatesan, S., “Effi-
cient Algorithms for Crash Recovery in Dis-
tributed Systems,” Proc. of the 10th Con{er—
ence on Foundations of Software Technolog
and Theoretical Computer Science (LNCS),
pp- 349-361 (1990).

[11] Kistler, J.J. and Satyanaranyanan, M., “Dis-
connected Operation in the Coda File Sys-
tem,” ACM Trans. on Dalabase Sysiems,
Vol. 10, No. 1, pp. 2-25 (1992).

[12] Koo, R. and Toueg, S., “Checkpointing and
Rollback-Recovery for Distributed Systems,”
IEEE Trans. on Software Engineering, Vol.
SE-13, No. 1, pp. 23-31 (19875.

[13] Neves, N. and I?’uchs, W.K., “Adaptive Re-
covery for Mobile Environments,” Communi-
cations of the ACM, Vol. 40, No. 1, pp. 69-74

1997).

[14] %’erkiz)ls, C., “IP Mobility Support,” Internet

Drafi:draft-ietf-mobileip-protocol-12.1zt

%1995). . .

[15] Pradhan, D.K., Krishna, P.P. and Vaidya,
N.H., “Recovery in Mobile Wireless Envi-
ronment: Design and Trade-off Analysis,”
Proc. of the 26th International Symposium on
Foult- Tolerant Computing, p%;rlﬁ-% (1996).

[16] Prakash, R. and Singhal, M., “Low-Cost

Checkpointing and Failure Recovery in Mo-

bile Computing Systems,” IEEE Trans. on

Parallel and Distributed Systems, Vol. 7, No.

10, %p 1035-1048 (1996).

Randell, B., “System Structure for Software

Fault Tolerance,” IEEE Trans. on Software

Engineering, Vol. SE~1, No. 2, pp. 220-232

1975).

[18] Tanaka, R. and Tsukamoto, M., “A CLNP-
based Protocol for Mobile End Systems
within an Area,” Proc. of IEEE ICNP-93, pp.
64-71 (1993).

[19] Teraoka, F., Uehara, K., Sunahara, H., and
Murai, J., “VIP: A Protocol Providing Host
Mobility,” Comm. ACM, Vol. 37, No. 8, pp.
67-75 (1994).

[20] Tong, Z., Kain, R.Y., and Tsai, W.T., “Roll-
back Recovery in Distributed Systems Using
Loosely Synchronized Clocks,” IEEE Trans.
on Parallel and Disiributed Systems, Vol. 3,
No. 2, pp. 246-251 (1992).

[21] Venkatesh, K., Radhakrishnan, T., and Li
H.F., “Optimal Checkpointing and Local
Recording for Domino-Free Rollback Recov-
ery,” Information Processing Letters, Vol. 25,

(17]

W. 295-303é1987&. .
[22] Wood, W. G., “A Decentralized Recovery

Protocol,” - Proc. of the 11th International
Symposium on Foult Tolerant Computing
Systems, pp. 159-164 (1981).

