RNFRAF 4 THERE EBME 10231
(2001. 3. 22)

Group Protocol for Quorum-Based Replication

Keijirou Arai, Katsuya Tanaka, and Makoto Takizawa

Tokyo Denki University
E-mail {arai, katsu, taki}@takilab.k.dendai.ac.jp

Distributed applications are realized by cooperation of multiple processes which manipulate data
objects like databases. Objects in the systems are replicated to make the systems fault-tolerant. We
discuss a system where read and write request messages are issued to replicas in a quorum-based scheme.
In this paper, a quorum-based (QB) ordered (QBO) relation among request messages is defined to make
the replicas consistent. We discuss a group protocol which supports a group of replicas with the QBO
delivery of request messages.

aA-SABRICEDWESN—-FFO b
i BRER E Bt SR R

RRERAZETERMERS AT LTER
E-mail {arai, katsu, taki}@takilab.k.dendai.ac.jp

BHEOABEL AT L, T=FXN=AFT Pz 7 FERETIEEO IO AOHHABMEIC L > TE
HEINTVWD, I, YATLNOEA TPy MV AT LADEBIELTANEN LT 2720 LE(L
TND, APETHE, read & write BRWI-FLAHFRICETE, LTUHOERSRIRITINDEI AT L
EEAD, FRX TR, LT ABO—BEERETDIEF (I—F LIEFQBO) &, Aybe—JEE%
TEHAOREZTRD. ZZ TR BERERAvE—VOZERZTHIEICKD, PATFLEEDR

N—Tw bZEREE®ES7ORINORE EFHEICDODNTHRE TS,

1 Introduction

Data objects are replicated in order to increase
performance and reliability of a system. In this
paper, we consider a simple object like a file,
which supports only basic read and write oper-

ations. The replicas of the objects are distributed -

in data servers. Users in clients initiate transac-
tions in application servers. Transactions manip-

ulate replicas by issuing requests to data servers.
The data and application servers are distributed
in computers.

A transaction sends a read request to one
replica and sends a write request to all the repli-
cas in order to make the replicas mutually consis-
tent, Another way is the quorum-based scheme
[3], where each of read and write requests are sent
to a subset of replicas named quorum. Each com-
puter exchanges messages with other computers,
where messages are requests issued by transac-
tions and responses from replicas in the comput-
ers. It is significant to discuss in which order to
deliver the request messages to replicas in each
computer.

In the group communications [4,5,10-12], a
message my causally precedes another message
my if the sending event of m; happens before the
sending event of my [9]. If m; causally precedes
mg, my is required to be delivered before my in
every common destination of m; and my. In ad-
dition, write requests issued by different transac-
tions are required to be delivered to replicas in
a same order. Thus, the totally ordered delivery
of messages is also required to be supported in a
group of replicas.

Some message m transmitted in the network
may be unexpectedly delayed and lost in the net-
work. The replica has to wait for m even if the
replica receives messages following m. Raynal et

al. {1] discuss a group protocol for replicas where
write requests delayed can be omitted based on
the write-write semantics. The authors [6] present
a TBCO (transaction-based causally ordered) pro-
tocol where only messages exchanged among con-
flicting transactions are ordered where objects are
not replicated.

Replicas receive read and write requests from
transactions in the quorum-based scheme. Sup-
pose a replica receives a write request w; and then
a read request r. There might be some write re-
quest wy between w; and r, which is not destined
to the replica. If there exists wy, it is meaningless
to perform r and w; since an obsolete data written
by w; is read by . We discuss significant messages
for each replica which are to be causally/totally
ordered in the quorum-based scheme. We present
a quorum-based group (QG) protocol which sup-
ports a group of replicas with the ordered delivery
of significant messages.

In section 2, we present a system model. In
section 3, we define a quorum-based precedent re-
lation of messages and we discuss what messages
to be ordered. In sections 4 and 5, we present
design and evaluation of the QG protocol.

2 System Model

Computers p1, ..., p, are interconnected in an
asynchronous network. That is, messages may be
lost and the delay time is not bounded in the net-
work. Replicas of data objects are stored in data
servers and transactions in application servers ma-
nipulate objects in data servers [Figure 1]. Let o;
denote a replica of an object o in a computer p;.
Let R(0) be a cluster of the object o.

A transaction T; is initiated in an application
server and sends read and write requests to ma-

—181—

client

application
server

Figure 1: System model.

nipulate a replica o; in a data server of computer
pt. On receipt of a request op from T;, op is per-
formed on the replica o; in the data server of the
computer p; if any operation conflicting with op
is being neither performed nor waited. Otherwise,
op is waited in the queue. This is realized by the
locking protocol. If the replica o; could be locked,
op is performed. Let op! denote an operation op
issued by 7T; to manipulate a replica o; in p;, where
op is either r(read) or w(write). The transaction
T; issues either a commit(c) or abort(a) request
message to the replicas to which 7T} issues read
and write requests. On receipt of ¢ or @ request,
the lock on o; held by T; is released.

A computer is assumed to support a data server
and application servers. A computer may send re-
quests 1ssued by a transaction while receiving re-
quests to the server from other computers. Thus,
each computer exchanges read and write requests
with other computers. In this paper, we discuss
in what order request messages received are deliv-
ered to replicas in each computer.

A pair of operations op; and ops on an object
are referred to as conflict iff op; or ops is write.
Otherwise, op; and ops are compatible.

A transaction 7; sends read requests to N,
replicas in a read quorum @, and write to Ny,
replicas in a write quorum @, of an object o. N,
and N, are quorum numbers. Q. C R(0), Qu
C R(o), and Qr U Qu = R{0) and N, + N, >
g. If a quorum is dynamically constructed each
time a request is issued, Ny, + Ny > ¢q. Each
replica o; has a version number v;. T; obtains a
version number v; from a replica o; which is the
maximum (. v; is incremented by one. Then,
the version numbers of the replicas in @, are re-
placed with v;. 7; reads the replica whose version
number is maximum in @,. Since N, + N, >
q, every read quorum surely includes at least one
newest replica.

3 Precedent Relation of Requests

3.1 'Quorum-based precedency

A request message m from a transaction T; is
enqueted into a receipt queue R(@); in a computer
pt. Here, let m.op show an operation op, t.e. 7
or w, m.o be an object o to be manipulated by
op, m.dst be a set of destination computers, and

data server

m.src be the source computer. A top request m
in RQ: is dequeued and then an operation m.op
is performed on a replica o; in p: where m.o = o.
RQ): shows a sequence of read and write requests
received but not yet performed in p;.

Each computer p, maintains a vector clock V
= (v1, ..., Un) [10] where n is the number of com-
puters. For every pair of vector clocks V; = (v11,

<o Vi) and Vo = (va1, ..., vaa), Vi > Vo if gy
>y fort =1, ..., n. If neither V4 > V5 nor V;
< Va, Vi and V3 are uncomparable (V1 || V3). V
is initially (0, ..., 0). Each time a transaction
s initiated in py, vy = vy, + 1 in p,. When T}
is initiated, V(T;) := V. A message m sent by T}
carries the vector m.V = (vq, ..., vn) (= V(T})).
On receipt of m from p,, V is manipulated in p;
as v, = max (v, mw,) fors =1, ..., n (s £ 1).

A transaction 7; is given a unique identifier
tid(T;). tid(T;) is a pair of the vector clock V{(T3)
and a computer number no(T}) of p,. For a pair
of transactions T; and T}, #d(T;) < id(T}) if V(1)
< V(T3). ¥ V(T;) and V(T}) are uncomparable,
tid(T;) < tid(T;) if no(Ti) < no(Tj). Hence, for
every pair of transactions 7; and T}, either tid(T})
< tid(Ty) or tid(1;) > tid(Tj).

Each request message m has a sequence number -
m.sq. sq is incremented by one in a computer p;
each time p; sends a message. For each message
m sent by a transaction T', m.tid shows #id(T).

[Quorum-based ordering (QBO) rule] A re-
quest m; quorum-based (Q—) precedes my (my <
mg) if my.op conflicts with ms.op and

1. tid(my) < tid(ma), or

2. my.sq < my.sq and tid(m;) = tid(mp). O

USRI

If my < mq, m; precedes my in RQ;. Other-
wise, my precedes my in RQ; if my || m2 and my
is received before my. Only a pair of conflicting
requests my and my are required to be ordered
in the same order “<” in every pair of common
destination computers of my; and ms.

[Theorem 1] Let m; and ma be conflicting re-
quests issued by different transactions.

e my < my if my causally precedes ms.

o Otherwise, m; < mg if a source computer of
my has a larger identifier than my. O

4 Significant Messages

Due to unexpected delay and congestions in the
network, some destination computer may not re-
ceive a message m. The replicas have to wait for
m and cannot deliver messages causally/totally
preceding m. The response time and throughput
can be improved if messages not necessarily to be
delivered are removed from the receipt queue and
are not waited.

A request m; locally precedes ms In a com-
puter p; (my —; m2) iff my Q-precedes my (my
< mg) or my —» Ma —; My for some request ms.
my globally precedes another request my (m; —
meq) iff my —; my or my —; m3z — Mo in some
computer p;.

Figure 2 shows receipt queues of three comput-
ers pt, pu, and p,, each of which has a replica of
an object 0. N, = N, = 2. For example, p; re-
ceives write requests wi, w§, and w}, and then a

—182—

o
[&
[%3
L '-ksh-;
Tﬂ‘!

u u u u
W, r w. r
al ~2 5
Pu & < O
v v v v
r w, r r
P, > W < g___.

time

Figure 2: Receipt sequences.

" read request rf, i.e. wi —¢ wh = wh — L w
— rY since w} —, r§. Neither r§ —, r§ nor r§
—yy 7§ since r{ and r§ are compatible.

A read r} reads data written by a write wj in

¢ £ A ot ¢ : :
pr (wh = rj) iff w] — r} and there is no write

w' such that wf —; w® —; rh.

[Definition] A write request w! is current for a
read request rf in a receipt queue RQ iff wh =
r;- and there is no write w such that w} — w —

ry. Here, 7% is also current. O

A request which is not current is obsolete. In
Figure 2, wj =, 7§ and w§ =, r§. wj and r§ are
current but wj and r§ are obsolete.

[Definition]

o A write request w;- absorbs another write re-

quest w} if wé —; w} and there is no read r
such that w;~ — 7 = wh
e A current read request r! absorbs another

read request % iff r{ —; rf and there is no

write w such that 7} > w — rt. O

In Figure 2, w} absorbs w! and w} absorbs w}

and wi. r§ absorbs r§. If neither r{ — % nor r

—+ r} in py, vf and rf read the same data because

there is no write request between rf and ‘r§ in RQ;.

Hence, data derived by 7! can be sent to not only
the source computer p, of rf but also p, of rf in
the response of 7%.

[Definition] A request m is significant in a re-
ceipt queue RQ; iff m is neither obsolete nor ab-
sorbed. O

In Figure 2, 7§ is current but is absorbed by
rg. vy and r§ are merged into one read request rgg
which returns the response to the transactions Ty
and Tg. Thus, w!, w}, and rf are insignificant in
pe: ¢ is insignificant in p, and r} is also insignifi-
cant in p,. Figure 3 shows a sequence of significant
requests for each computer obtained in Figure 2 by
removing insignificant requests. This sequence
is referred to as significant sequence. Further-
more, p; is allowed to deliver messages without
waiting for insignificant messages.

5 Group Protocol
5.1 Message format

We present a QG (quorum-based group) proto-
col for a group of replicas o1, ..., 0, of an object
o0 in computers p1, ..., pp (n > 1), respectively. A
request message m sent by a transaction 7; in p;
is composed of the following attributes:

t
w
o
Pt P
u u
w r
Jq] ro
Puﬂ ®
v v
P e rs6

time

Figure 3: Significant sequences of Figure 2.

m.op = type of operation op, i.e. r or w.

m.o =object o to be manipulated by m.op.

m.src =source computer p;. ‘

m.tid =transaction identifier of T;.

m.dst =set of destination computers supporting
replicas of o in the quorum Qop.

m.sq = sequence number.

m.SSQ = subsequence numbers (s5q1, ..., 55¢n).

m.ACK = receipt confirmation (ack, ..., acky).

m.V = vector clock, i.e. V(T;) = (v1, .. .,0n).

m.C = write counters {c1, ..., ¢s).

m.data=data.

Replicas to be in a quorum €., are randomly
selected each time a request op is issued.

5.2 Transmission and receipt

Each message m carries a sequence number
m.sq. Each time p; sends a message, sq is incre-
mented by one. Since a message is sent to some
computers in the group, a message gap cannot be
detected by using the sequence number. In or-
der to detect a message gap, variables SSQ =
(ssq1, ..., ssqn), RSQ = (rsq, ..., rsqn), and
RQ = (rq1, ..., rg,) are manipulated in p;. Each
time p; sends a message m to a computer p,, a
subsequence number ssq, is incremented by one.
The message m carries m.ssq where m.ssq, =
ssqy forv=1,...,n.

The variables rq, and rsq, show a sequence
number (sq) and a subsequence number (ssq;) of
a message which p; expects to receive from p, (u
=1, ..., n), respectively. Suppose p; receives a
message m from p,. If m.ssq; = m.rsqs, p; has
received every message which p, had sent to p;
before m, i.e. no message gap. Then, rsq, := rsq;
+ 1. rq, := max(rqs, m.sq). If m.ssq: > rsqs, p:
finds p; has not received some gap message m’
from p, where m.rsq, < m'.ssq; < m.ssg;. The
selective retransmission is adopted. Hence, m is
enqueued into the receipt queue RQ:. '

When p, sends a message m to p;, m.ack, =

rgy (v =1, ..., n). p: knows p, has accepted ev-
ery message m’ from p, where m’.sq < m.ack,.
p:+ manipulates the matrix ACK ; ACK,, =
m.ackg, for u=1, ..., n.
[Definition] A message m from p; is locally ready
in a receipt queue RQ: iff m.ssqy = 1 or every
message my from p, in RG; such that mi.ss5q; <
m.ssq; is locally ready. O

A message m received from a computer p; is
locally ready in p; if m.ssq; = rsq,. If m is locally
ready in RQ), p; receives every message which p,
has sent to p; before sending m. A message my

—183—

directly precedes m, for a computer p; in RQ;
(m1 —>¢s m2) ff my.ssqs = my.s5¢, — 1.
[Definition] Let m be a message from p;, .
e partially ready in RQ; iff
1. m is locally ready or
2. mis aread and there is a partially ready
message m; in RQ); such that
® my; —¢s m, and
o m.op is compatible with ms.op, i.e.
mg.op = r for every message mq
where mj.ssq: < my.s5¢; < m.ssq;,
i.e. p, sends my to p, after m; be-
fore m but p; does not receive ms.

e m is ready in RQ; iff
1. m is locally ready and there is some lo-
cally ready message m;(< m) from ev-
ery py (# pt) in RQy, or
2. m is partially ready, and for every p,
(# ps), if there is no locally ready mes-
sage my (> m) from p, in RQ;, there is a
paréially ready message ms (> m) from
Pu.
A message m can be decided to be partially
ready according to the following rule:

e A message m from a computer p; is partially
ready in RQ; if

1. m.ssq; = rsqs, i.e. m is locally ready, or

2. m.op = r and m;.c; = my.c; for a pair of

requests m; and my such that m; —;
m —ps My,

Suppose p; receives m; from p, and has re-
ceived no message from p, after receiving m,.
Suppose p; receives mo from another computer
Pu. 1 my .89 < ma.ack,, p; knows p, has sent some
message mg such that my.sq < msz.sq < my.ack;.
However, p; cannot know whether or not mg is
destined to p;.

[Definition] A message m from a computer p,
1s uncertain in RQ, iff p, does not receive m, p;
knows that some computer p, (#p,) has received
m, i.e. p; receives such a message m; that m.sq <
my.ackg from p,, and p; does not know whether
or not m is destined to p;. O

5.3 Delivery of requests

Suppose a computer p; receives a message m.
Let m, denote a message sent by p, where m, <
m and there is no message m!, from every com-
puter p, such that m, < m,, < m. Let max(my,

.., My) be a mazimum message m, such that
m, < m, for every m; (s = 1, ..., n). Here, m,
directly Q-precedes m in p;.

If m is ready in RQ:, p; has surely received a
partially ready message m/, from every computer
pu such that m, < m < m]. The messages m;,
..., My are also partially ready. p; can deliver m
after my, ..., m,. Let ml be a partially ready
message which p, sends to p; such that m, < m
< m!, and there is no message m!, from p, such
that m < m! < m/,. If m] is locally ready, every
message m,, which p, sends to p; after sending m,,
before m!, is not destined to p. If m}, is partially
ready but not locally ready, m,, is uncertain. Sup-
pose there are undestined or uncertain messages
uy, ..., ug such that m, < u; < ... < u <mas

shown in Figure 4. p; receives a message m, (=
max(my, ..., m,)) and then receives m but does
not receive uy, ..., ux. If m is locally ready, the
messages ui, ..., ug are undestined. If m is par-
tially ready, some message u; is uncertain. Table
1 summaries how m and m, are insignificant.

u Mk m
o =

ﬂ% n% 1
AN gy —

time

T X 27N
- destined message L) ! undestined message
; ~—

Figure 4: Receipt sequence of messages.

Table 1: Insignificant messages.
my m U, ..., Uk I Insignificancy

read | read | every w;is | m is insignificant
read. (absorbed by my).

m is merged to m.,.

some u; is | m is insignificant
write. (obsolete).
write | read | every w; is | m and m,
read. are significant.
some w; is | m and m, are
write. insignificant(obsolete).

m is not decided.
write | write My 18
insignificant (obsolete).

read | write

If my, is not partially ready, p; does not receive
a message m! from a computer p, such that m, <
m! < m < m! and m is destined to p;. If m.op
conflicts with m!].op, p; has to wait for a message
mj, such that m < m{, from p,. If m and m! are
read, p; can deliver m without waiting for m,,.
From the definition, not only m], but also every
request m! is read if m), is partially ready.

In order to detect insignificant requests in RQs,
p: manipulates a vector of write counters C' = {c;,

.., Cn), where each element c, is initially zero.

Suppose p; sends a message m. If m is a write
request, ¢, := ¢, + 1 for every destination p, of
m. m.C := C. Each message m carries write
counters m.C = (m.cy, ..., m.cp). On receipt
of a write request m from a computer p;, ¢, =
max(cy, m.cy)(u =1, ..., n).
[Theorem 2] Let m; and my be messages re-
ceived by a computer p; in a receipt queue RQ:
where m; precedes my. There exists such a write
request mgz that my < mz < my if m;.C < my.C
and m.V < my.V. O
[Example 1] In Figure 5, each of four computers
p1, P2, P3, and py has areplica of an object z and a
write counter C is (0,0,0,0). N, =2 and N, = 3.
p1 sends a write request w;y to ps, ps, and py. and
w;.C = (0,1,1,1). On receipt of wy, C is changed
to (0,1,1,1) in po, ps, and ps4. Then, py sends wo to
p1, p2, and ps. Here, wy.C = (0,1,1,1) + (1,1,1,0)
= (1,2,2,1). Then, p3 sends r3 to ps and py where
r3.C = (1,2,2,1) since C' is not changed on send-
ing any read request. r3.V > w;.V and r3.C (=

—184—

(1,2,2,1)) > w1.C (= (0,1,1,1)). From the theo-
rem, p4 finds that some undestined write exists
between w; and r3. Here, w; and r3 are insignifi-
cant in py4.

p, P, Py D,
<0,0,0,0> <0,0,0,0>
W1<0,1,1.1>
=7
\.\' <0.1,1,1>
<0,1,1,1> <0,1,1,1>
/ 2 <12.2,1>
<1,2,2,1> <122,1> <1,2,2,1>

/ I3<122,1>
<2,2,3,2> / wa

T5<1,2.2,19

<1,1,2,2>
<2,2,3,2> .

\

Figure 5: Obsolete messages.

pa receives wy but not wy. On the other hand,
p4 Teceives wy but not wy. Here, wy.C = (1,2,2,1),
wye.C = (1,1,2,2), and r5.C = (1,2,2,1). In pq,
w4.C || r5.C and ws and rs are not causally re-
lated, wq.V || 75.V. From the theorem, p, can-

not decide if an undestined write exists hetween
wq and rs. On the other hand, ws causally pre-

cedes r5, i.e. we.V < r5.V and wy.C = r5.C (=
(1,2,2,1)). Hence, p, considers that no write exists
between w4 and r5. However, p4 does not decide if
75 is obsolete since 75.C || w4.C. That is, w; and
r5 are not ready and have to stay in RQ4 until ps
receives a message from p; and p3.0

6 Evaluation

The QG protocol is evaluated by measuring
the number of requests performed in each com-
puter and waiting time of each message in a re-
ceipt queue through the simulation. We make the
following assumptions on the simulation:

[Assumptions]

1. Each computer p; has one replica o; of an
object o (t = 1, ..., n). Here, n is a number
of computers.

2. Transactions are initiated in each computer
pt- pr sends one request issued by a transac-
tion every T time units. 7 is a random vari-
able.

3. It takes m time units to perform one request
in each computer.

4. p; randomly decides which replica to be in-
cluded in a quorum for each request.

5. It takes & time units to transmit a message
from a computer to another. ¢ is summation
of minimal delay time min § and random vari-
able e.

6. N, and N, are quorum numbers for read and
write, respectively. N, + Ny > n+ 1l and n
+ 1< 2N, <n+ 2.

7. It is randomly decided which type read or
write each request is. P, and P, are prob-
abilities that a request is read and write, re-
spectively, where P, + P, = 1. O

o
&

R0 M=

g =05 -
=l -

gu.e

K]

2

2

2 o8

2 LaRER AR +oe +

i S

30.4

H e om e e *--oo- [.

: R

2

3

2

&

ot 1 10 100 1000
N.=3 N,=3

Figure 6: Ratio of significant requests.

Figure 6 shows how many requests are per-
formed in each computer by the QG protocol
where n = 5, N, = N, =3, P, =08, =10
for # = 0, 0.5, 1[msec]. “P, = 80” means that
80% of messages are read requests. “r = 10”
means that each computer sends a message every
10[msec]. The vertical axis shows what percent-
age of requests received are significant. The delay
times § = 5. § = 20, and § = 120 mean that repl-
cas are distributed in a local area network, in a
network of Japan, and in the world, respectively.
“m = 0.5” shows that it takes 0.5[msec] to per-
form a request. Here, about 50% of the messages
transmited are significant. That is, half of the
messages received are removed from the receipt
queue. For m = 1, about 30% of the messages
are significant. m = 0 shows a processing speed
of each request is so fast that it can be neglected.
Here, no message stays in a receipt queue. Every
request is performed. In the QG protocol, only
the significant messages are delivered. This shows
that fewer number of requests are performed, i.e.
less computation and communication overheads in
the QG protocol than the message-based protocol.

‘
a=5 =M=

4200 +
=128 -;
as

©
\

+

i

Average waiting time wimsec]
o
\
\
\

6 B
Number of repiicas(n)

Figure 7: Average waiting time of message.

Figure 7 shows average waiting time w[msec]
of message in the receipt queue for number n of

—185—

replicas. Here, P, = 0.8, 7 = 10[msec], and 7 =
0.5[msec]. Here, Ny = Ny, [(n+1)] / 2. Three
cases § = 0.5, § = 20, and § = 120 of average
delay time are shown. Figure 7 shows the average
waiting time of each message w is O(n) for the
number n of computers.

02

Ratio of tha significant requests lor the tota! (destined) requests
o
2

) o1 02 03 04 o5 08 07 08 0.9 1
Pr

Figure 8: Ratio of read requests(?,).

Figure 8 shows a ratio of significant messages
for P,. Here, m = 0.5[msec], n = 5, and N, = N,,
= 3. “P, = 0” indicates that all the request are
write. “P, = 1” shows that all the requests are
read. In case P, = 0 and P, = 1, every request
in a receipt queue is read and write, respectively.
In case P, =0, a last write request absorbs every
write in the queue. In case P, = 1, a top read
request absorbs every request in the queue. Here,
the smallest number of requests are performed.
In case “P, = 0.5”, the number of insignificant
requests removed is the minimum.

7 Concluding Remarks

This paper discussed a group protocol for a
group of computer which have replicas where the
replicas are manipulated by read and write re-
quests issued by transactions in the quorum-based
scheme. We defined the quorum-based ordered
(QBO) delivery of messages. We defined signif-
icant messages to be ordered for a replica. We
presented the QG (quorum-based group) proto-
col where each replica decides whether or not re-
quests received are significant and which supports
the quorum-based ordered (QBO) delivery of mes-
sages. The QG protocol delivers request messages
without waiting for insignificant messages. We
showed that how number of messages to be per-
formed and average waiting time of message in a
receipt queue can be reduced in the QG protocol
compared with the traditional group protocol.

References
{1] Ahamad, M., Raynal, M., and Thia-Kime,
G., “An Adaptive Protocol for Implement-

ing Causally Consistent Distributed Services,”
Proc. of IEEE ICDCS-18, 1998, pp.86—93.

[2] Keijirou, A., Katsuya, T., and Takizawa, M.,
“Group Protocol for Quorum-Based Repli-
cation” Proc. of IEEE ICPADS’00, 2000,
pp.57-64.

[3] Bernstein, P. A., Hadzilacos, V., and Good-
man, N., “Concurrency Control and Recovery
in Database Systems,” Addison- Wesley, 1987.

[4] Birman, K., Schiper, A., and Stephenson, P.,
“Lightweight Causal and Atomic Group Multi-
cast,” ACM Trans. Computer Systems, Vol.9,
No.3, 1991, pp.272-314.

[5] Birman, P. K. and Renesse, V. R., “Reliable
Distributed Computing with the Isis Toolkit,”
IEEE Comp. Society Press, 1994.

[6] Enokido, T., Tachikawa, T., and Takizawa,
M., “Transaction-Based Causally Ordered
Protocol for Distributed Replicated Objects,”
Proc. of IEEE ICPADS’97, 1997, pp.210-215.

[7] Enokido, T., Higaki, H., and Takizawa, M.,
“Group Protocol for Distributed Replicated
Objects,” Proc. of ICPP’98, 1998, pp.570-
577.

[8] Garcia-Molina, H. and Barbara, D. : How to
Assign Votes in a Distributed System, Journal
of ACM, Vol.32, No.4, 1985, pp. 841-860.

[9] Lamport, L., “Time, Clocks, and the Ordering
of Events in a Distributed System,” Comm.
ACM, Vol.21, No.7, 1978, pp.558-565.

[10] Mattern, F., “Virtual Time and Global
States of Distributed Systems,” Parallel and
Distributed Algorithms, 1989, pp.215-226.

[11] Nakamura, A. and Takizawa, M., “Causally
Ordering Broadcast Protocol,” Proc. of IEEE
ICDCS-14, 1994, pp.48-55.

[12] Ravindran, K. and Shah, K., “Causal Broad-
casting and Consistency of Distributed Shared
Data,” Proc. of I[EEE ICDCS-14, 1994,
pp.40-47.

[13] Tachikawa, T. and Takizawa, M., “Signifi-
cantly Ordered Delivery of Messages in Group
Communication,” Computer Communications
Journal, Vol. 20, No.9, 1997, pp. 724-731.

(14] Tanaka, K., Higaki, H., and Takizawa,
M. “Object-Based Checkpoints in Distributed
Systems,” Journal of Computer Systems Sci-
ence and Engineering, Vol. 13, No.3, 1998,
pp-125-131.

—186—

