
Information Flow Control in
Role-Based Access Control Model

Keiji Izaki, Katsuya Tanaka, and Makoto Takizawa
Department of Computers and Systems Engineering

Tokyo Denki University
Email {izaki, katsu, taki}@takilab.k.dendai.ac.jp

Various kinds of applications are designed and implemented in an object-based model. Object-based systems are
required to be secure in order to realize the applications. The secure system is required to not only protect objects
from illegally manipulated but also prevent illegal information flow among objects. In this paper, we discuss how
to resolve illegal information flow to occur among object in a role-based model. We define safe roles where no
illegal information flow occurs. In addition, we discuss how to safely perform transactions belonging to unsafe
roles. We discuss an algorithm to check if illegal information flow occurs.

役割に基づくアクセス制御におけるオブジェクト間の情報流制御

井崎 慶之 田中 勝也 滝沢 誠

東京電機大学理工学部情報システム工学科

様々な応用がオブジェクトベースモデルで設計、実装されるとともに、応用の安全性を保つ必要がある。安全なシ
ステムとは、不正な操作だけでなく、不正な情報流をも防ぐシステムである。本論文では、オブジェクト間の不正
な情報流を役割に基づくアクセス制御モデルを用い制御する方法について定義する。また、安全な役割について定
義し、安全でない役割に属するトランザクションを安全に実行する方法について定義する。

1 Introduction
Various kinds of object-based systems like object-

oriented database systems, JAVA, and Common Ob-
ject Request Broker Architecture (CORBA) [8] widely
used to design and implement applications. Object-
based systems are composed of multiple objects which
cooperate to achieve some objectives by passing mes-
sages. An object is an encapsulation of data and meth-
ods for manipulating the data. Methods are invoked
through the message passing mechanism. In addi-
tion, methods invoked may invoke other methods in
a nested manner. In addition to realizing the interop-
erability of applications, secure systems are required
to not only protect objects from illegally manipulated
but also prevent illegal information flow among objects
in the system.

In the basic access control model, an access rule is
specified in a form 〈s, o, t〉 which means that a subject
s is allowed to manipulate an object o in an access type
t. Only access requests which satisfy the authorized

access rules are accepted to be performed. However,
the access control model implies the confinement prob-
lem [7], i.e. illegal information flow occurs among
subjects and objects. In the mandatory lattice-based
access control model [1, 3, 10], objects and subjects
are classified into security classes. Legal information
flow is defined in terms of the can-flow relation [3] be-
tween classes. In the mandatory model, access rules
are specified by an authorizer so that only the legal
information flow occurs. For example, if a subject s
reads an object o, information in o flows to s. Hence,
the subject s can read the object o only if a can-flow
relation from o to s is specified. In the role-based
model [4, 11, 14], a role is defined to be a collection of
access rights, i.e. pairs of access types and objects,
which shows a job function in the enterprise. Subjects
are granted roles which show jobs assigned to the sub-
jects. An object-based system is a restricted version of
an object-oriented system where inheritance hierarchy
is not supported. The purpose-oriented model [13, 15]

1

研究会Temp
マルチメディア通信と分散処理

研究会Temp
103－16

研究会Temp
（２００１． ６． ８）

研究会Temp

研究会Temp
－89－

discusses which methods may invoke another method
in the object-based system. Since methods are invoked
in the nested manner in the object-based systems, we
have to discuss information flow to occur in nested in-
vocations of methods. We define a set of safe roles
where no possible illegal information flow occurs in
presence of nested invocations. That is, no illegal in-
formation flow occurs as long as every transaction is
in a session with a safe role. In addition, we discuss
an algorithm to check for a transaction which is in a
session with an unsafe rule if illegal information flow
possibly occurs each time a method is issued to an ob-
ject. By using the algorithm, some methods issued by
a transaction can be performed even if the transaction
is in a session with an unsafe role.

In section 2, methods supported by objects are clas-
sified from information flow point of view. In section
3, we discuss information flow to occur in a nested in-
vocation. In section 4, we discuss information flow to
occur in performing transactions with roles. In sec-
tion 5, we discuss how to resolve illegal information
flow among objects for unsafe roles.

2 Object-based Systems
2.1 Role-based access control model

An object-based system is composed of classes and
objects. A class is composed of attributes and meth-
ods. Objects are instances of the class, which are cre-
ated by giving values to the attributes of the class.
The objects are only manipulated through the meth-
ods of the class. A transaction invokes a method of
an object by sending a request message to the object.
On receipt of the message, the method specified in the
message is performed on the object. On completion of
the method, the response is sent back to the sender of
the message. During the computation of the method,
other methods might be invoked. Thus, methods are
invoked in a nested manner.

In access control models, there are subject and
object. A subject shows a user or an application pro-
gram. The subject manipulates objects by invoking
their methods. On the other hand, an object is a pas-
sive entity. The relation of subjects and objects are
relative in the object-based system.

Each subject plays a role in an organization. A role
represents a job function in the organization. In the
role-based model [4, 11, 14], a role is modeled in a set
of access rights. An access right is specified as a pair
〈o, t〉 of an object o and a method t meaning that t
can be performed on the object o. Let R be a set of
roles in the system. In the role-based model, a subject
s is granted a role which shows its job function. This
means that the subject s can perform a method t on

an object o if 〈o, t〉 ∈ r. A subject s establishes a
session with r. Then, s can issues methods in r. Each
subject can be in a session with at most one role.
2.2 Classification of methods

Each method t on an object o is characterized by
the following parameters [Figure 1]:

1. Input type (I): If the method t has input data in
the parameter, the input type of t is I, else N .

2. Manipulation type (M): If the state of the object
o is changed by t, the manipulation type of t is
M , else N .

3. Derivation type (D): If data is derived from the
state of the object o by t, the derivation type of
t is D, else N .

4. Output type (O): If data is returned to the in-
voker of t, the output type of t is O, else N .

t

I

O

D M

o

method

data

Figure 1: Information flow on an object.

Each method t of an object o is characterized by a
method type mtype(t) in terms of the input α1, ma-
nipulation α2, derivation α3, and output α4 types, i.e.
mtype(t) = α1α2α3α4 where α1∈{I, N}, α2∈{M , N},
α3∈{D, N}, and α4∈{O, N}. For example, a method
class “IMNN” shows a method which carries data in
the parameters to an object and changes the state of
the object, e.g. the data is stored in the object. Here,
if some type αi in the specification of the method type
is N , N is omitted in the method type. For example,
“IM” shows IMNN . Especially, “N” shows a type
NNNN . There are sixteen method types from infor-
mation flow point of view as shown in Figure 2. Let
MC be a set {IMDO, IDO, IMO, IO, IMD, ID,
IM , I, MDO, DO, MO, O, MD, D, M , N} of pos-
sible method types.

Suppose a subject s is in a session with a role r.
The subject s manipulates objects through methods
according to the access rights in the roles. We assume
that each subject does not have any persistent stor-
age. That is, the subject does not keep in record data
obtained from the object by manipulating the object.
The subject issues one or more than one method to ob-
jects to do some work. A sequence of methods issued
by the subject is referred to as a transaction, which is
a unit of work. Each transaction can be in a session

2

研究会Temp

研究会Temp
－90－

IMDO IDO IMO IO

IMD ID IM I

MDO DO MO O

MD D M N

Figure 2: Method types.

with one role. A transaction has a temporary memory.
Data which the transaction derives from objects may
be stored in the memory of the transaction. On com-
pletion of the transaction, the transaction memory is
released. Any transaction initiated for a subject does
not share data with the other transactions.

In the object-based system, methods are invoked
in the nested manner. Suppose a transaction T is
in a session with a role r and T invokes a method
t1 on an object o1. If 〈o1, t1〉 ∈ r, T is allowed to
manipulate o1 through t1. Here, suppose t1 invokes
another method t2 on an object o2. If 〈o2, t2〉 ∈ r,
there is no problem t2 manipulates o2 through t2. Let
us consider case 〈o2, t2〉 �∈ r. In one approach, t1 is not
allowed to invoke t2. That is, every method invoked
in the transaction T is considered to be invoked by T
itself. The method t2 can be invoked in T only if an
access right 〈o2, t2〉 is in the role r which is in a session
with T . This approach is named impersonation. In
the other approach, if the owner of the object o1 is
granted an access right 〈o2, t2〉, t1 is allowed to invoke
t2 even if T is not granted 〈o2, t2〉. This approach is
taken in the relational database system. In the role-
based access control model, t1 is allowed to invoke t2
if the owner of o1 is in a session with some role r′

including the access right 〈o2, t2〉. This one is named
ownership chain approach.

3 Nested Invocation
3.1 Invocation tree

A transaction invokes methods and then some of
the methods invoke other methods. For example, a

transaction T invokes a method t1 on an object o1
and another method t2 on an object o2. Then, t1
invokes a method t3 on an object o3. The invocations
of methods in the transaction T are represented in a
tree form as shown in Figure 3. The tree is named
invocation tree Tree(T) of T . In Figure 3, each node
shows a method t invoked on an object o, i.e. 〈o, t〉,
in the transaction T . A dotted directed edge from a
parent to a child shows that the parent invokes the
child. 〈o1, t1〉 �T 〈o2, t2〉 means that a method t1 on
an object o1 invokes t2 on o2 in the transaction T . A
node 〈 , T 〉 shows a root of invocation tree of T . Here,
mtype(T) is N according to the assumption.

If a method serially invokes multiple children, the
left-to-right order of children shows an invocation se-
quence of methods. i.e. tree is ordered. Suppose
〈o1, t1〉 �T 〈o2, t2〉 and 〈o1, t1〉 �T 〈o3, t3〉 is in an invo-
cation tree of a transaction T . If t1 invokes t2 before
t3, 〈o2, t2〉 precedes 〈o3, t3〉 (〈o2, t2〉 ≺T 〈o3, t3〉) in T .
In addition, 〈o4, t4〉 ≺T 〈o3, t3〉 if 〈o2, t2〉 �T 〈o4, t4〉.
〈o2, t2〉 ≺T 〈o4, t4〉 if 〈o3, t3〉 �T 〈o4, t4〉. ≺T is transi-
tive. For example, T invokes t1 before t2 as shown in
Figure 3. 〈o1, t1〉 ≺T 〈o2, t2〉 and 〈o3, t3〉 ≺T 〈o2, t2〉.

t2t1

T

t3

o1 o2

o3 : method
: data

: invocation

Figure 3: Invocation tree.

3.2 Information flow
In Figure 3, suppose mtype(t3) = DO, mtype(t2)

= IM , and mtype(t1) = O. In a transaction T , data
is derived from an object o3 through the method t3.
The data is forwarded to t1 as the response of t3. The
data is brought to the method t2 as the input param-
eter. The data is stored into the object o2 through
t2. Thus, the information in o3 is carried to o2. A
dotted arc shows an invocation and straight arc indi-
cates information flow in Figure 4. Here, data derived
from o3 may flow into o2. This example shows that
information flow among objects may occur in a nested
invocation.
[Definition] Suppose a pair of methods t1 and t2 on
objects o1 and o2, respectively, are invoked in a trans-
action T .

1. Information passes down from 〈o1, t1〉 to 〈o2, t2〉
in T (〈o1, t1〉⇁T 〈o2, t2〉) iff t1 invokes t2 (〈o1, t1〉 �T

3

研究会Temp

研究会Temp
－91－

〈o2, t2〉) and I ∈ mtype(t2), or 〈o1, t1〉 ⇁T 〈o3, t3〉
⇁T 〈o2, t2〉 for some 〈o3, t3〉 in T .

2. Information passes up from 〈o1, t1〉 to 〈o2, t2〉 in
T (〈o1, t1〉 ⇀T 〈o2, t2〉) iff 〈o2, t2〉 �T 〈o1, t1〉 and O
∈ mtype(t2), or 〈o1, t1〉 ⇀T 〈o3, t3〉 ⇀T 〈o2, t2〉 for
some 〈o3, t3〉 in T . ✷

[Definition] Information passes from 〈o1, t1〉 to
〈o2, t2〉 in a transaction T (〈o1, t1〉 →T 〈o2, t2〉) iff 〈o1, t1〉
⇁T 〈o2, t2〉, 〈o1, t1〉 ⇀T 〈o2, t2〉, 〈o1, t1〉 ⇁T 〈o3, t3〉 ⇀T
〈o2, t2〉 and 〈o1, t1〉 ≺T 〈o2, t2〉, or 〈o1, t1〉 →T 〈o3, t3〉
→T 〈o2, t2〉 for some 〈o3, t3〉 in T . ✷

Suppose the invocation tree of T shown in Figure
4 is ordered, i.e. 〈o1, t1〉 ≺T 〈o2, t2〉 and 〈o3, t3〉 ≺T

〈o2, t2〉. Here, 〈o3, t3〉 ⇀T 〈o1, t1〉 ⇀T 〈 , T 〉 ⇁T 〈o2, t2〉.
[Definition] 〈o1, t1〉 →T 〈o2, t2〉 iff 〈o1, t1〉 ⇁T 〈o2, t2〉,
〈o1, t1〉 ⇁T 〈o2, t2〉, or 〈o1, t1〉 →T 〈o3, t3〉 →T 〈o2, t2〉 for
some 〈o3, t3〉 in T . ✷

A relation “o1 →T o2” shows “〈o1, t1〉 →T 〈o2, t2〉” for
some methods t1 and t2. The relation “o1 →T o2” means
that some data in an object o1 flows to another object
o2 in a transaction T .
[Definition] 〈o1, t1〉 flows into 〈o2, t2〉 in a transac-
tion T (〈o1, t1〉 ⇒T 〈o2, t2〉) iff 〈o1, t1〉 →T 〈o2, t2〉, D ∈
mtype(t1), and M ∈ mtype(t2). ✷

In Figure 4, 〈o3, t3〉 ⇒T 〈o2, t2〉 where 〈o3, t3〉 is a
source and 〈o2, t2〉 is a sink. Here, data in the object
o3 flows into the object o2. “〈o1, t1〉 ⇒T 〈o2, t2〉” can be
written as “o1 ⇒T o2”.

t2t1

T

t3

o1 o2

o3
: method
: data

: invocation
: information flow

Figure 4: Information flow.

Let Tr(r) be a set of transactions each of which is
in a session with a role r. o1 ⇒r o2 shows o1 ⇒T o2 for
some transaction T in Tr(r).
[Definition] An role r1 threatens another role r2 iff
for every pair of objects oi and oj ,

• oi ⇒r2 oj , and
• oi �⇒r1 oj and oj ⇒r1 o for some object o. ✷

By performing a transactions in a session with r2,
information in oi might flow to another object oj. If
another transaction is not granted an access right to
derive data from oi while granted an access right to
derive data from oj , the transaction can get data in oi

even if the transaction is not allowed to do it. A role
of the transaction is threatens r2. If there is another
role threatens a role r, illegal information flow might
occur. We define a safe information flow.
[Definition] An information flow relation “oi ⇒r oj” is
safe for a role r iff every other role neither threatens
r nor is threatened by r ✷.
[Definition] oi ⇒ oj is illegal iff oi ⇒ ok ⇒r oj but
oi �⇒r oj for some object ok and some role r. ✷

[Definition] A role r is safe iff oi ⇒r oj is safe for
every pair of access rights 〈oi, ti〉 and 〈oj , tj〉 in the
role r. ✷

A transaction is safe iff the transaction is in a ses-
sion with a safe role. An unsafe transaction is in a
session with an unsafe role.
[Theorem] If every transaction is safe, no illegal in-
formation flow occurs. ✷

The paper [6] discusses an algorithm for checking
if each method issued by an unsafe transaction might
imply illegal information flow.

4 Information Flow for Roles
4.1 Confinement problem on roles

r r’

s

o

o

s’

i

j

t i

t j

(1) (2)
r r’

s

o

o

s’

i

j

Figure 5: Roles.

Suppose there is a role r including access rights
〈oi, ui〉 and 〈oj, uj〉 for a pair of objects oi and oj.
If DO ∈ mtype(ui) and IM ∈ mtype(uj), a subject
in a session with r can derive data from oi through
ui and then can write the data into oj through uj.
Here, information in oi might be brought into oj by
performing methods in r, i.e. oi ⇒r oj .

Suppose there is only a role r′ in addition to the
role r in a system. First, suppose the role r′ includes
〈oi, ti〉 and 〈oj , tj〉 where DO ∈ mtype(ti) and DO ∈
mtype(tj). Some subject s′ in a session with r′ can get
data from the objects oi and oj through DO methods
ti and tj, respectively, as shown in Figure 5 (1). Even
if the subject s brings data from oi to oj, the subject
s′ can obtain the data from oj because s′ is allowed to
obtain data from oi. Secondly, suppose r = { 〈oj , tj〉 }
and DO ∈ mtype(tj) In Figure 5 (2), a role r′ includes
only 〈oj , tj〉, not 〈oi, ti〉 since s′ cannot access to oj.

4

研究会Temp

研究会Temp
－92－

There is no illegal information flow from oi. Here,
another subject s′ can get information which s has
derived from the object oi by manipulating the object
oj although the subject s′ is not allowed to manipulate
oj . This is also a kind of the confinement problem [7],
i.e. illegal information flow might occur.

4.2 Models
Suppose a transaction T is in a session with a role

r. Here, we assume an access right 〈o, t〉 is in r if a
method t is invoked on an object o by T . It is not easy
to make clear what transaction there are for each role
and how each transaction invokes methods. First, we
discuss a basic (b) simple model where a transaction in
a session with a role r may invoke all the methods in r.
A virtual object transaction Tr is assumed to invoke
a method t on an object o (〈 , T r〉 �r 〈o, t〉) for every
〈o, t〉 in the role r. An invocation tree of Tr is an an
ordered, two-level tree. For example, 〈 , T r〉 →r 〈o, t〉
if 〈o, t〉 ∈ r and I ∈ mtype(t). 〈o, t〉 →r 〈 , T 〉 if 〈o, t〉 ∈
r and o ∈ mtype(t). →r is transitive. 〈o, t〉 ⇒r 〈 , T 〉 iff
〈o, t〉 →r 〈 , T r〉 and D ∈ mtype(t). 〈 , T r〉 ⇒r 〈o, t〉 iff
〈 , T r〉 →r 〈o, t〉 and M ∈ mtype(t). 〈o1, t1〉 ⇒r 〈o2, t2〉
iff 〈o1, t1〉 →r 〈 , T r〉 and 〈 , T r〉 →r 〈o2, t2〉. Here, o1 ⇒r
o2 shows “〈o1, t1〉 ⇒r 〈o2, t2〉” for some methods t1 and
t2. ⇒r is referred to as inter-role information flow
in r. Tr ⇒r o and o ⇒r Tr show “〈 , T r〉 ⇒r 〈o, t〉” and
“〈o, t〉 ⇒r 〈 , T r〉” for some method t, respectively.

Next, suppose a collection of transactions are a
priori defined. Tr(r) is a set of transactions which
are in sessions with r. Let N(T) be a set of method
t invoked on o in a transaction T . Let Al(r) be {〈o,
t〉 | 〈o, t〉 ∈ N(T) for every transaction T in Tr(r)}.
That is, Al(r) gives a collection of methods invoked in
transactions which are to be in a session with r.

Suppose there are two transactions T1 and T2 which
are in sessions with a role r. T1 invokes a method t1 on
an object o1. T2 invokes a method t2 on an object o2
and then t2 invokes a method t3 on an object o3 and
t4 on o4. Here, Tr(r) = {T1, T2}. N(T1) = {〈o1, t1〉},
and N(T2) = {〈o2, t2〉, 〈o3, t3〉, 〈o4, t4〉}. There are
two cases : invocation sequence of methods is a priori
fixed or not, i.e. invocation tree of each transaction is
ordered(o) or unordered(u).

A forest of invocation trees, each of which has one
of the transactions as the root, can be constructed as
shown in Figure 6. In the basic model Tr(r) invokes
t1 and t2. Here, there is no information flow between
o1 and o3, because o1 is manipulated by T1 and o3
is manipulated by T2. If transaction are not ordered,
o4 ⇒r o3 as shows in Figure 6. On the other hand,
if transactions are ordered, o4 is manipulated before
o3. Hence, o4 �⇒T2 o3 Thus, possible illegal information

flow can be reduced.

T

t t

t t

1 2

3 4

: source

: sink

: information flow

1 T2

Tr

Figure 6: Invocation trees.

For each model of basic (b), unordered (u), and
ordered (o) models, information flow relations are de-
fined for a role r as follows:

oi ⇒rb oj iff oi ⇒r oj in the b model.
oi ⇒ru oj iff oi ⇒r oj in the u model.
oi ⇒ro oj iff oi ⇒r oj in the o model.

Flow relations ⇒b, ⇒u, and ⇒d are defined in a similar way.
[Theorem] oi ⇒ro oj if oi ⇒ru oj . oi ⇒ru oj if oi ⇒rb oj. ✷

5 Resolution of Illegal Information
Flow

Every safe transaction is allowed to be performed
because no illegal information flow occurs. We discuss
how to perform even unsafe transactions Suppose a
transaction T is in a session with a role r. A method
t on an object o is invoked in T . There are two cases:

1. Another method t1 is invoked on an object o1
before t in T and o1 ⇒r o. Here, IM ∈ mtype(t).

2. Data in o is derived through t, i.e. DO ∈
mtype(t).

Suppose a system maintains a following directed
flow graph G is constructed.
[Flow graph]

1. Each node shows an object in the system.
2. A directed edge o1 →τ o2 is created if oi ⇒τ oj at

time τ by a transaction T .
3. o1 →τ o2 is created if o1 →τ o3 →τ′

o2, τ < τ ′, and
no directed edge from o1 to o2. ✷

In(o) = {o1 | o1 →τ o for some τ in G}. If the
following condition is satisfied, the method t is allowed
to be invoked in the object o.

1. For every object o2 in In(o1), 〈o2, t2〉 ∈ r and DO
∈ mtype(t2) for case 1 [Figure 7 (1)].

2. For every object o2 in In(o), 〈o2, t2〉 ∈ r and DO
∈ mtype(t2) for case 2 [Figure 7 (2)].

In the condition 1, data in some object o2 might
have been brought into o1 before T manipulates o. If
t is invoked in T , data in o1 is carried to o, that is,

5

研究会Temp

研究会Temp
－93－

o2

o1 o

o2

o

T

(1) (2)

TT

Figure 7: Conditions.

data in o2 might have been brought to o. Here, if the
role r has an access right to derive data from o2, t is
allowed to be performed. Otherwise, t is not allowed.

Suppose some data in an object oi illegally flows to
another object oj by performing a transaction T with
a role r at time τ (oi →τ oj in G). Security level of
the data is changing time by time. After it takes some
time, the data flowing from oi to oj is really to be
manipulated according to roles other then r. In the
flow graph G, edges are removed as follows:

1. Each edge oi →τ oj is removed from the flow graph
G if τ + δ < σ. Here, σ shows the current time.

6 Concluding Remarks
This paper presented an access control model for

the object-based system with role concepts. We dis-
cussed how to control information flow in a system
where method are invoked in a nested manner. We
first defined a set of safe roles where no illegal informa-
tion flow possibly occurs in types of invocation models,
basic (b), unordered (u), and ordered (o) models. We
presented the algorithm to check if each method could
be performed, i.e. illegal information flow occurs af-
ter the method is performed. By using the algorithm,
some methods issued by an unsafe transaction can be
performed depending on in which order a transaction
performs the methods even if the methods are not al-
lowed to be performed due to the unsafeness of the
roles. We also discussed a case that security level is
time-variable

References
[1] Bell, D. E. and LaPadula, L. J., “Secure Com-

puter Systems: Mathematical Foundations and
Model,” Mitre Corp. Report, No. M74–244, Bed-
ford, Mass., 1975.

[2] Castano, S., Fugini, M., Matella, G., and Sama-
rati, P., “Database Security,” Addison-Wesley,
1995.

[3] Denning, D. E., “A Lattice Model of Secure In-
formation Flow,” Communications of the ACM,
Vol. 19, No. 5, 1976, pp. 236–243.

[4] Ferraiolo, D. and Kuhn, R., “Role-Based Access
Controls,” Proc. of 15th NIST-NCSC Nat’l Com-
puter Security Conf., 1992, pp. 554–563.

[5] Izaki, K., Tanaka, K., and Takizawa, M., “Au-
thorization Model in Object-Oriented Systems,”
Proc. of IFIP Database Security, 2000.

[6] Izaki, K., Tanaka, K., and Takizawa, M., “In-
formation Flow Control in Role-Based Model for
Distributed Objects,” to appear in Proc. of IEEE
Int’l Conf. on Parallel and Distributed Systems
(ICPADS-2001), 2001.

[7] Lampson, B. W., “A Note on the Confinement
Problem,” Communication of the ACM, Vol. 16,
No. 10, 1973, pp. 613–615.

[8] Object Management Group Inc., “ The Common
Object Request Broker : Architecture and Spec-
ification,” Rev. 2.1, 1997.

[9] Samarati, P., Bertino, E., Ciampichetti, A., and
Jajodia, S., “Information Flow Control in Object-
Oriented Systems,” IEEE Trans. on Knowledge
and Data Engineering Vol. 9, No. 4, 1997, pp.
524–538.

[10] Sandhu, R. S., “Lattice-Based Access Control
Models,” IEEE Computer, Vol. 26, No. 11, 1993,
pp. 9–19.

[11] Sandhu, R. S., Coyne, E. J., Feinstein, H. L.,
and Youman, C. E., “Role-Based Access Control
Models,” IEEE Computer, Vol. 29, No. 2, 1996,
pp. 38–47.

[12] Sybase, Inc., “Sybase Adaptive Server Enterprise
Security Administration,” 1997.

[13] Tachikawa, T., Yasuda, M., and Takizawa, M.,
“A Purpose-oriented Access Control Model in
Object-based Systems,” Trans. of IPSJ, Vol. 38,
No. 11, 1997, pp. 2362–2369.

[14] Tari, Z. and Chan, S. W., “A Role-Based Ac-
cess Control for Intranet Security,” IEEE Inter-
net Computing, Vol. 1, No. 5, 1997, pp. 24–34.

[15] Yasuda, M., Higaki, H., and Takizawa, M., “A
Purpose-Oriented Access Control Model for In-
formation Flow Management,” Proc. of 14th IFIP
Int’l Information Security Conf. (SEC’98), 1998,
pp. 230–239.

6

研究会Temp

研究会Temp
－94－

