SIVF AT 1 7 IEE & BILE
(2001. 6. 7)

Optimization of Nested Invocation on Replicas in
Object-based Systems

Katsuya Tanaka and Makoto Takizawa

Tokyo Denki University
Email {katsu, taki}@takilab.k.dendai.ac.jp

An object-based system is composed of multiple objects which are encapsulation of data and methods.
Objects are replicated in order to increase reliability and throughput. If a method ¢ is invoked on multiple
replicas and each instance of ¢ invokes another update method u, u is performed multiple times on replicas
and then the replicas get inconsistent, i.e. redundant invocations. In addition, since an instance of a
method on each replica issues a request to its own quorum, more number of the replicas are manipulated
than the quorum number, i.e. quorum explosion. We discuss a protocol named QB (quorum-based) one
to resolve the redundant invocations and quorum explosion. We show how many replicas manipulated
and requests issued are reduced by the QB protocol.

AT FOBERRRICETEDAYV Yy FOANFEHLAXO BB

H Bt EiR W

WHRERAE
E-mail {katsu, taki}@takilab.k.dendai.ac.jp

BEESNI IOz M ATLATIR, EROLVTUARSELI N T D7 b Ay ROREH
BHUICX D BREBEZRTRD, TIT, AV Y RE. BUOHEINEAV v RO AY v RERUHT,
TRLBANTFHELTERINTNS, RIZ. S HI2alal BROLTVAIZHLT, XVy Rt
DEFTEERL. AVYBRLOEA AT AN, BROVTUDIZHUTEHAY Y RuDEITFEERT S
ETB, ZOEE, uDI LAY AR IZEFHUEN, A—OL 7 H L TEREERTENSHENH 5.
INERAEFUCHLU SRR, MAT, v 2R TT3LTVA0KE. Tbbu0I—54% LSUIMT
RoTW3EA, PEEUEOLTUAMNOy7ENTLES, ThE, I-FLBERERE, FFETIE.

I3LEAY Y ROANFRVHLIZBWTRETZHBEICOWTERL. TORRELRT.

1 Introduction :
Objects are replicated in order to-increase the
reliability, availability, and performance in dis-
tributed object-based applications [12]. In the
two-phase locking (ZPL? protocol 3,7], one of the
replicas for read and all the replicas for write are
locked. In the quorum-based protocol [8], qguorum
numbers N, and N, of the replicas are locked for
read and write, respectively. The subset of the
replicas is a quorum. Here, a constraint “N, +
N, > a” for the number a of the replicas has
to be satisfied. An object is an encapsulation of
data and methods for manipulating the data. A
pair of methods conflict on an object if the result
obtained by performing the methods depends on
the computation order. In the papers [13,15}, the
quorum concept for read and write is extended to
objects supporting more abstract level of meth-
ods. Suppose a pair of update methods t and u
are issued to replicas z; and z; of an object z.
The method ¢t may be performed on one replica
z; and the other method u on another replica z,
if t and u are compatible. Here, the state of z; is
different from z,. The newest versions of z; and
z3 can be obtained by performing methods per-
formed on the other replica, i.e. u is performed
on z; and t is performed on z3. As long as t and
u are issued, the methods are performed on repli-
_ cas in their quorums. If some method v conflicting
with ¢ is issued to a replica z;, every instance of ¢
not performed so far is required to be performed
_onz;. “Ny + N, > a” if t and u conflict. Even
if a replica is updated by ¢ or u, i.e. write, Ny +
N, < a only if t and u are compatible.

In the object-based system, methods are in-
voked in a nested manner. Suppose a method ¢
on an object z invokes a method u on another ob-
ject y. Let z; and z; be replicas of the object
z. Let y; and yo be replicas of y. A method ¢ is
issued to the replicas z; and z;. We assume that
every method is deterministic. That is, the same
computation for ¢ is done on z; and z;. Then, the
method t invokes the other method u on y; and
y2. Here, u is performed twice on each replica al-
though u should be performed only once on each.
of the replicas y; and y; if the replicas are updated
by u. Otherwise, y gets inconsistent. This is a re-
dundant invocation. In addition, an instance of
the method ¢ on @, issues a method u to replicas
in its own quorum @, and another instance of ¢
on 2, issues a method u to replicas in Q, where
1Q1] = |Q2| = Ny, but @, # Q2. More number of
replicas are manipulated than the quorum number
Ny, ie. |Q1 U Q2] > Ny. If the method u fur-
thermore invokes another method, the number of
replicas to be manipulated is more increased and
eventually all the replicas are manipulated. This
is a quorum ezplosion. We discuss how to resolve
the redundant invocations and quorum explosions
in nested invocations of methods on replicas.

In section 2, we overview the quorum-based
protocol. In section 3, we discuss how to resolve
the redundant invocation of methods on replicas.
In section 4, we discuss how to resolve the quorum
explosion. In section 5, we evaluate the quorum-
based protocol in terms of number of replicas to be
manipulated and number of requests to be issued.

103—8

2 Quorum-based Replication
2.1 Traditional quorum concept

A transaction invokes a method t by issuing a
request ¢ to an object . Then, the method ¢ is
performed on the object -z and then the response
is sent back to the transaction. In this paper,
we assume each method is synchronously invoked.
Here, the method ¢t may invoke other methods, i.e.
nested invocation. A method ¢ is compatible with
a method u iff the result obtained by performing
the methods ¢ and u on the object z is indepen-
dent of the computation order. Otherwise, ¢ con-
flicts with u. We assume the conflicting relation
1s symmetric but not transitive.

Suppose there are three replicas z;, z;, and
23 of an object z which supports a method ¢.
In the quorum-based protocol (8], a transaction
issues write and read requests to subsets of the
replicas named gquorums including some numbers
N, and N, of replicas of z, respectively. Here,
Ny, + N, > 3. For example, a write request is
issued to replicas in a quorum @,, = {z;, 2,} and
a read request is issued to a quorum @, = {z3,
z3}. The read and write methods are surely per-
formed on the replica z; in @, N Q, while only
write and read are performed on z; and z3, re-
spectively. Each replica z; has a version number
b;. b; is incremented by one each time write is
performed on z;. If a request t is issued, a replica
z; whose version number b; is maximum in a quo-
rum @Q; is found. If the request is write with a
value v, v is written into the replica z;. The ver-
sion number b; is incremented by one. Then, b; is
sent to the replicas in @,,. If the request is read,
the value v; of z; is derived.

decrement tncrement

display

Figure 1: Object-based quorums.

2.2 Object-based quorum

An object is an encapsulation of data and pro-
cedures for manipulating the data. The object
is allowed to be manipulated only through proce-
dures named methods. Traditional quorum-based
locking protocols for primitive methods read and
write on simple files are extended to methods of
objects {13, 15].

Let us consider a counter object ¢ which sup-
ports three types of methods increment (inc),
decrement (dec), and display (dsp). Suppose there
are four replicas c1, ¢3, c3, and ¢4 of the counter
object ¢, i.e. the cluster R, is {c1, c3, ca, ¢4}
According to the traditional quorum-based the-
ory, inc and dec are considered to be write meth-
ods because they change the state of the object c.
Hence, Ninc + Ndec > 4; Ndsp + Ninc > 4: and

35

Ngsp + Ngee > 4. For example, Nine = Ng.c =
3 and Ngy,, = 2. Since dsp conflicts with inc and
dec, Nysp + Ninc > 4 and Ngsp + Ngee > 4 in
our protocol [Figure 1]. On the other hand, inc
and dec are considered to be compatible because
the state obtained by performing inc and dec is
independent of the computation order.

Quorums of an object = have to satisfy the fol-
lowing constraint.
[Object-based Quorum (OBQ) constraint] If
a pair of methods £ and u conflict, N; + N, > a
where a is the total number of the replicas. O

It is noted that N; + N, < a if ¢t and u are
compatible even if ¢ or u is update. The OBQ
constraint implies the following properties:

[Property] Every pair of conflicting methods ¢
and u of an object = are performed on at least k
(= N: + N, - a) replicas in the same order. O

Hence, Nijne + Ngee < 4, €.8. Nine = Ngee =
2. Suppose Qinc = {c1, c2} and Que. = {c3, cs}-
Sirice either inc or dec is performed on replicas in
the quorums, the states of ¢; and c3 are different.
However, if dec is performed on ¢; and ¢, and inc
on c3 and c4 here, the states of ¢;, c3, ca, and ¢4
can be the same. This is an ezchanging procedure
where every method ¢ performed on one replica is
sent to other replicas where the method ¢ is not
performed and only methods compatible with the
method ¢ are performed. As long as only compati-
ble methods inc and dec are issued to the replicas,
the exchanging procedure is not required to be ex-
ecuted. Suppose dsp is issued to three replicas c;,
c2, and c3 where Q4. = {c1, c3, c3}. dsp con-
flicts with ¢nc and dec. dsp cannot be performed
on replicas ¢;, ¢z, and c3 because only inc is per-
formed on ¢; and ¢; and only dec on cs. Before
performing dsp, dec has to be performed on ¢; and
¢z and #nc on c3. inc and dec can be performed in
any order because they are compatible. Here, c;,
¢z, and c3 get the same because both inc and dec
are performed on every replica. Then, dsp can be
performed. The detail of the protocol is discussed
in the paper [15].

3 Redundant Invocation

3.1 Invocation on replicas

In the object-based system, methods are in-
voked in a nested manner. Suppose there are mul-
tiple replicas z;, ..., ¢, of an object z and mul-
tiple replicas y;, ..., y» of another object y and
a method ¢ of z invokes a method u of y. One
way to invoke a method t on replicas of the ob-
ject z is a primary-secondary replication. There
is one primary replica, say z; and the others z,,
..., @, are secondary ones. Let y; be a primary
replica of the object y. Every request is issued
to a primary replica [Figure 2]. The method ¢ is
performed on a primary replica z;, and then a re-
quest u is issued to a primary replica y;. After the
method on the primary replica commits, the state
of the primary replica z, is transmitted to the sec-
ondary ones. The method is performed on only
the primary replica and is not performed on any
secondary replica. If a primary replica is faulty,
this invocation way does not support higher avail-
ability because a new primary replica is required
to be selected from the secondary ones. We take
an approach where a method is issued to multiple

Figure 2: Primary-secondary replication.

replicas where the methods are performed.

Let ¢, ..., t,, be instances of a method ¢ on
an object z in a transaction T. Suppose that
the method ¢ invokes a method u on an object
y. Let S(t;) be a set of replicas of the object y to
which an instance t; issues a method u. If |S(¢;)
U+ U S(tm)| > |Qul, the transaction T' manipu-
lates more number of replicas of the object y than
the quorum number |Q,|, i.e. the quorum of the
method u is exploded. |S(t1) U --- U S(tm)| =
|Qu] is required to be held for the transaction T.

- A transaction T issues a method ¢ to replicas
in the quorum Qy, say N; = 2. Suppose t is issued
to replicas ¢; and 3. Furthermore, ¢ issues a re-
quest u to replicas of the object y in the quorum
of the method u. Here, suppose N, = 2. Let ¢,
and t; be instances of the method ¢ performed on
replicas z;, and z,, respectively. Each of instances
t; and t, issues a request u to replicas in a quo-
rum of u. Here, let @,; and Q,; be quorums of
u decided for the instances ¢; and ¢,, respectively,
where |Qu1! = |Qu2‘ = ’Qu' Suppose Qu1 = Quz
= {y1, y2}. Each of the instances t; and ¢, issues
a request u to the same replicas y; and y;. Here,
let u;; and u;; show instances of the method u
performed on replicas y; and y2, which are issued
by an instance ¢; (i = 1, 2), respectively [Figure
3]. If u is an update type, a state of the replica
y1 is inconsistent because two instances u;; and
uz1 from the methods ¢, and t; are performed on
the replica y,, respectively. For example, suppose
the value of y is multiplied by two through the
method u. Every replica of the object y must be
multiplied by two. However, the replica of y is fi-
nally multiplied by four since u is performed twice
on the replica. This is a redundant invocation, i.e.
a method on a replica is invoked by multiple in-
stances of a- method.

. A transaction T invokes a method t on an ob-
ject z and then ¢ invokes a method » on an object

y as shown in Figure 3. ¢; and ¢; show instances
of a method ¢. Here, the instances ¢; and ¢, are
referred to as replica instances of a same method
t if ¢; and 2, are invoked by a same instance or
by different replica instances of a same method.
In Figure 3, 11, w12, ug1, and ug; are replica in-
stances of the method u. The following constraint
has to be satisfied in invocations of a method ¢ on
multiple replicas of an object z.

[Invocation constraint] At most one replica in-
stance of a method invoked by a transaction is
performed on each replica. O

Figure 3: Redundant invocation.

[Theorem] If every method is invoked on a
replica so that the invocation constraint is sat-
isfied, the replica is consistent. O

Suppose a replica is not changed by a method
t. A replica of an object z is not changed even
if t is performed ¢t is performed multiple times on
the replica. Hence, the invocation constraint is
modified as follows:
[Weak invocation constraint] At most one
replica instance of a method which changes a
replica is performed on each replica. O

Let ¢ be a method on an object = invoked by a
transaction T'.

Ni(T) = number of replicas of z where £ is
invoked by T.

I,(T, 2;) = number of replica instances of
which are performed on a replica z;.

I(T) = total number of replica instances of ¢

= ZL(T, ;).

The following constraint have to be satisfied.

N(T) > Ny
I(T) > N(T)

If N;(T) = N; and I,(T) = N, the method t is
minimally invoked by T'. If ¢ is minimally invoked
on replicas by T', no redundant constraint occurs.
Furthermore, no quorum explosion occurs.

3.2 Resolution
We discuss how to satisfy the invocation con-
straint. Each instance ¢; of a method ¢ invoked
on a replica of an object has an identifier id(t;).
The identifier d(¢;) is composed of method type ¢
and identifier of the object z. Each transaction T’
has a unique identifier tid(T'), e.g. thread identi-
fier of T. If T invokes a- method ¢, ¢ is assigned a
transaction identifier #¢d(t) as a concatenation of
tid(T) and invocation sequence number iseq(T, t)
of t in T. The invocation sequence number iseq(T,
t) is incremented by one each time T invokes a
method:) :
e If t is a first method invoked by T, iseq(T, t)
= 1.
o If T invokes t after t’ and invokes no method
before t after ¢/, iseq(T, t) = iseq(T, t') + 1.

Here, suppose a method t; on an object z; is
invoked by a method instance t; on z;. tid(tp)
is given as a concatenation of tid(t,), id(t;), and
iseq(ty, t3), Le. tid(tz) := tid(ty):id(ts):iseq(ty,

t2). Thus, the identifier tid(;) shows an invoca-
tion sequence of method instances from T to ¢;.

[Theorem] Let ¢; and #; be instances of a method
. tid(ty) = tid(t;) iff t; and t2 are replica in-
gances of the method ¢ invoked in a transaction.

In Figure 3, tid(T) is assumed to be 6. Suppose
the transaction 7' invokes a method ¢ on replicas
z1 and z; of an object z after invoking three meth-
ods. iseq(T, t;) = iseq(T, t2) = 4. Here, tid(t;) =
tid(ty) = tid(T):iseq(T, t,) = td(T):iseq(T, t3)
= 6:4 and id(t1) = id(t;) = t:2. The method ¢
invokes another method % on replicas of an object
y after invoking one method. tid(u11) = tid(u;,)
= tid(ty }id(t1):2 = 6:4:4:2:9. tid(uz;) = tid(ug,)
= td(t2):4d(t3):2 = 6:4:t:2:2. Since tid(uy;) =
tid(uzl), u11 and ug; are replica instances of the
method u on a replica Y1.

Suppose a method ¢ is invoked on a replica zh.
The method ¢ is performed on z; as follows:

1. If t is issued to a replica z5, an instance i
of t is created and a response res of ¢ is sent
back. A tuple (¢, res, tid(ty)) is stored in the
log Ly, of z;,.

2. If (¢, res, tid(t})) such that tid(ty) = tid(t})
is found in the log Ly, ie. #, and 1), are
replica instances of a same method ¢, the re-
Sponse res of ¢, stored in the log Ly is sent
back without performing ¢} .

Thus, even if multiple instances of a method
are issued to a replica, they can be detected to
be the replita instances by using the transaction
identifier ¢id. By the resolution of the redundant
invocation presented here, at most one replica in-
stance of a method ¢ is surely performed on each
replica even if instances on multiple replicas in-
voke the method ¢. That is, L(T, ;) < 1 for every
method ¢ on a replica z;. In addition, the method
t can be performed on a replica even if a replica
z; is faulty. Furthermore, a method u invoked by
t is performed on some number of replicas of y.
In Figure 3, u11 is performed on the replica y;.
(u, response of u, tid(uy;)) is stored in the log L,.
Then, uy is issued. Since tid(uq,) = tid(u21), ugy
is not performed and the response of u;; stored in
L, is sent to ¢,.

4 Quorum Explosion
4.1 Basic protocol

In Figure 3, the quorums Q3 and Q,; are as-
sumed to be the same, Qui = Qua. Here, we as-
sume Q1 and Q,, are different, @,,, # Qua, say
Qul = {ylx y2} and Qu2 = {.'/2, y3}- Here, the
method u is performed on each replica in a subset
Q= Qui U Qu = {1, y, ¥s}. The method
u is performed twice on the replicas in Q,; N
Qu2 = {y;} as presented in the preceding section.
If another transaction manipulates the object Y
through the method U, u is issued to the replicas
in the quorum Q,, say {ys, y,}. [Qui U Qua| >
|Qu|. This means that more number of replicas
are manipulated by the transaction T than the
quorum number N,.. Then, the instances of the
method u on the replicas in Qui U Q.5 issue fur-
ther requests to other replicas and more number of
replicas are manipulated. That is, Nu(T) = N,,.

This problem is referred to as quorum ezplosion.

[Definition] A quorum of an object z for a
method ¢ is ezploded if replica instances of ¢ in-
voked in a transaction T are performed on more
number of replicas of z than the quorum number
N, oft. O

Suppose a method ¢ on an object z invokes a
method u on an object y. Let Qy,; be a quorum
of the method w invoked by an instance tn of the
method ¢ on a replica Zp, i.e. subset of replicas
of the object y. In order to resolve the quorum
explosion, a pair of quorums Qur and Q,; have
to be the same for every pair of replicas z; and zp
where an instance of the method ¢ is performed.
If a quorum is & priori decided for a method t,
ie. Qui = Qup = Qu, only the same replicas are
manipulated for every instance of the method w.
If some method is frequently invoked, the replicas
in the quorum are frequently manipulated. The
replicas are overloaded. If some replica is faulty,
2 quorum including the faulty replica is required
to be changed.

We take a following way to resolve the quorum
explosion:

1. A same function select for generating a same
set of numbers is supported for each replica.
That is, select(, n, a) gives a set of n num-
bers out of 1, -y @ for a same initial valye 3
where n < a. For example, select(i, n, a) =
{h1h="T5+ 21 - 1)) mod a for § = 1,
<an}CA{L, .., a}

2. Suppose an instance tp on a replica zj in-
vokes a method u. For each replica =z, I
= select(numb(tid(ts)), N,,, b) is obtained,
where numb(tid(t,)) is a number obtained
from tid(t,), N, is |Qul, and b is a total
number of replicas, i.e. {v1, ..., w}. Sup-
pose tid(t,) is 81:83:-+-18y. For example,
numb(tid(ty)) is (s; + - + sg) mod a. That
is, IC{1,...,b}and |I] = Ny. Then, a quo-
rum @ is constructed as {y; |ie I}

Every replica instance invoked by a same in-

stance = has the same
transaction identifier as presented in the preced-

ing subsection. Hence, select(numb(tid(ty,)), N,,
b) = select(numb(tid(t;)), N,, b) for every pair
of replica instances tn and t; of the method ¢ in-
voked by a same instance. An instance ¢, of the
method t on every replica 2z issues a request of
the method u to the same quorum @y, (= Q,).
Hence, no quorum explosion occurs [Figure 4].

identifiess “fiction e o rglades thread
can be differently constructed for each invoker of
the method ¢ depending on tid of the invoker.

4.2 Modified protocol ‘

In this approach, each instance ¢, on a replica
y, issues a request u to N, replicas of the ob ject y.
Since each of N, instances of the method ¢ issues
Ny requests, totally N; « N, requests are trans.
mitted. We try to reduce the number of requests
transmitted in-the network. Let Qu be a quorum
of the method u obtajned by the function select
for each instance of the method t. Every instance
ts has the same quorum @, for a method u which
to be invoked by ¢. If each instance ¢, issues a
Tequest u to only a subset Q. C Qu, we can re-

Figure 4: Resolution of quorum explosion.

duce the number of requests issued to the replicas
of the object y. Here, let Q; be a set {1, ... z,}
and @, be {yl, ... Y} wherea = N; and b = N,
Here, Q‘ul u. Qua. - Qu

In order to increase the reliability, each replica
¥ in the quorum Q, is required to receive a
request u from more than one instance of the
method ¢. Let r (> 1) be a redundancy factor,
i.e. the number of requests of u to be issued to
each replica y in Q,. For each instance ¢, on a
replica o5 in the quorum Q:, Qux is constructed
for the method u as follows (h = 1, ..., a):

1. Ifa > b-r,
{yk|k—]'h"]}1fh<r b.

Qun = otherwise.
2. Ifa < br,
Quu={uw| 0+) <k<

[1+ ([@E=28) 1) mod b
I}

For example, suppose instances t;, 13, and 3
of a method t on replicas z;, z2, and z3 issue a
request u to replicas yi, y2, ys, and ys, ie. the
quorum Q¢ = {1, 3, 23} and Qu = {1, ¥2, ¥s,
ys}. Suppose the redundancy factor r is 2. Hence,
Qua={us | (1+ (L O)) <k < (14 (| B2
J+ 1 §]~ 1) mod 4)}. Hence, Qu1 = {1, v2},
Quz = {yz» v3, ya}, and Quz = {ys, ¥4, y1}. Two
requests from the instances of the method ¢ are
issued to each replica y;. For example, suppose an
instance ¢; on 2, is faulty. ¢; sends u to replicas
in Qu: and t3 sends u to replicas in Qus. Since
Quz U Qus = {y1, y2, ¥3, Y4}, u is sent to every
replica in the quorum Q. r = 1, Qui = {51},
Quz = {y2}, and Qus = {y3, y4}. Thus, totally
r + N, requests of the method u are issued to the
replicas in Q. Evenif (r — 1) instances out of ¢y,

., to are faulty, the quorum number N,, replicas
of y are manipulated.

5 Evaluation

We evaluate the QB protocol to resolve the re-
dundant invocation and quorum explosion to oc-
cur in nested invocations of methods on replicas
in terms of number of replicas manipulated and
number of requests issued. The following three
protocols R, Q, and N are considered:

1. Protocol R: without redundant invocation

and quorum explosion.
2. Protocol Q: without redundant invocation.
3. Protocol N:

@

invocation level 1

1

[Z2 |
2

Figure 5: Invocation model.

In the protocol Q, the redundant invocation
is prevented but the quorum explosion is not re-
solved. In the protocol R, neither redundant invo-
cation nor quorum explosion occur. The protocol
R shows the QB protocol discussed in this paper.
In the protocol N, redundant invocation and quo-
rum explosion may occur.

In the evaluation, we take a simple invoca-

tion model where a transaction T first invokes a
method ¢; on an object z;, then ¢; invokes another

method £; on @3, - - - [Figure 5]. Here, let a; be the
number of replicas of an object z; (i = 1, 2, ...).
Let N; be the quorum number of a method ¢; (N;
< a;), where ¢ shows a level of invocation. In the
protocol, a transaction T first issues N; requests
of t; to the replicas of z;. Then, each instance
of t; on a replica issues N, requests of ¢; to the
replicas of z3. In the protocol N, a method ¢; in-
voked by each instance of ¢; is performed. Here,
totally N;-N; requests are performed. In the pro-
tocol Q, at most one instance of t; is performed on
each replica of z; by the resolution procedure of
the redundant invocation. Since the quorum ex-
plosion is not resolved, the expected number QE;
of replicas where ¢; is performed is az[1 — (1 —
%)N 1]. Then, each instance of t; issues requests
of t3 to N3 replicas of z3. Here, ag[l — (1 —
%’;’-)N 1¥3] replicas are manipulated in the proto-
col N and QF3 = a3l — (1 — %)QE’] replicas in

the protocol Q. In the protocol R, 2, is performed
on only N; replicas of the object z3.

Protocol N =%~
Protocol Q - ®-
Protocol R -©-

Te e

Ratio of replicas to be locked to the total number

5 8 7
Invocation ledvel (i)

Figure 6: Ratlo of replicas manipulated (a = 10
and N = 3).

In the evalua.tlon, we assume that a; =a; =...
=a=10and Ny =N, =...= N (< a). Figure 6
shows the ratios of rephcas wherc a method is per-
formed to the quorum number a of the replicas at .
each invocation level ¢ for quorum number N = 3.

The dotted line with white circles shows the ratio
for the protocol R. The straight line indicates the

protocol N and the other dotted line with black
circles shows the protocol Q. If methods are in-
voked at a deeper level than two for N = 3, all
the replicas are manipulated if the redundant in-
vocation and quorum explosion are prevented.

Figure 7 shows the number of request messages
transmitted by instances of a method ¢; for N =
3. The vertical axis shows log(m) for m = number
of requests issued. In the protocol N, N* request
messages are issued to replicas of the object z;
because N*~! instances are performed on replicas
of the object @;_;. In the protocol Q, there are afl
~ (1 — X)@B:i-3] replicas of z;_; where instances
of amethod t;_; are performed. Hence, afl ~(1-
%)QE'*]N request messages are transmitted. In
the protocol R, we assume the redundancy factor
7 = N in this evaluation. N? request messages

are transmitted. Table 1 summarizes the number
of requests issued for each protocol. -

‘Table 1: Number of requests issued.

protocols | number m of Tequests at level 2
Q all — (1- 2)9%2IN
R N*
N N*
10 pev m
Protocol N
9 Protocol Q - - K
o Protocol R - &
8
7
g
26
@
s
g4
g 3 P IR T b
2t = O @-nmnn G- O cmman O -mee@ummne 4
L3 4 9 10

5 6 7
Invocation level (i)

Figure 7: Number of request messages issued (a
~=10and N = 3). :

Let us consider a pair of methods ¢ and u on
an object z. According to the traditional proto-
cols [8,9], a method is considered to be write if
the object is changed by the method. Hence, if
the object z is updated by ¢ or u, N, + N, > a.
However, N; + N, < a if t and u are compati-
ble in the QB protocol even if ¢ or u is an update
method. This means the less number of replicas
are manipulated in the protocol R than the tradi-
tional ones.

6 Concluding Remarks

This paper discussed how transactions invoke
methods on multiple replicas of objects. The ob-
Ject supports a more abstract level of method than
read and write. In addition, methods are invoked

in a nested manner. If methods are invoked on
multiple replicas in a nested manner, multiple re-

dundant instances of a same method may be per-
formed on a replica and more number of replicas
than the quorum number may be manipulated.
We discussed the QB (quorum-based) protocol
how to resolve redundant invocations and quorum
explosions to occur in systems where methods are
invoked on multiple replicas in a nested manner.
By using the QB protocol with the resolution of
redundant invocations and quorum explosions, an
object-based system including replicas of objects
can be efficiently realized.

References

]

[2

—

3

=

=

(12]

(13]

14

[lany

(18]

Ahamad, M., Dasgupta, P., LeBlanc R., and
Wilkes, C., “Fault FTCS Tolerant Comput-
ing in Object Based Distributed Operating
Systex;x;,” Proc. 6th IEEE SRDS, 1987, pp.
115-125.

Barrett, P. A., Hilborne, A. M., Bond, P.
G., and Seaton, D. T., “The Delta-4 Extra
Performance Architecture,” Proc. 20th Int’l
Symp. on , 1990, pp. 481-488.

Bernstein, P. A., Hadzilacos, V., and Good-
man, N., “Concurrency Control and Recov-
ery in Database Systems,” Addison- Wesley,
1987.

Bernstein, P. A., and Goodman, N., “The
Failure and Recovery Problem for Replicated
Databases,” Proc. 2nd ACM POCS, 1983,
pp. 114-122.

Birman, K. P. and Joseph, T.‘A., “Reliable
Communication in the Presence of Failures,”
JACM , Vol. 5, No. 1, pp 1987, pp. 47-76.

Borg, A., Baumbach, J., and Glager, S.,
“A Message System Supporting Fault Toler-
ance,” Proc. 9th ACM Symp. on Operating
Systems Principles, 1983, . 27-39.

Carey, J. M. and Livny, M., “Conflict De-
tection Tradeoffs for Replicated Data,” 4CM
TODS, Vol.16, No.4, 1991, pp. 703-746.

Garcia-Molina, H. and Barbara, D., “How
to Assign Votes in a Distributed System,”
JACM, Vol 32, No.4, 1985, pp. 841-860.

Gifford, D. K., “Weighted Voting for Repli-
cated Data,” Proc. 7th ACM Symp. on Oper-
ating Systems Principles, 1979, pp. 150-159,

Korth, H. F., “Locking Primitives in a
Database System,” JACM, Vol. 30, No. 1,
1983, pp. 55-79.

Powell, D., Chereque, M., and Drackley, D.,
“Fault-Tolerance in Delta-4,” ACM Operat-
ing System Review, Vol. 25, No. 2, 1991, PP-
121-125.

Silvano, M. and Douglas, C. S., “Construct-
ing Reliable Distributed Communication Sys-
tems with CORBA,” IEEE Comm. Maga-
zine, Vol.35, No.2, 1997, pp.56-60. :

Tanaka, K., Hasegawa, K., and Takizawa, M.,
“Quorum-Based Replication in Object-Based
Systems,” Journal of Information Science
and Engineering (JISE), Vol. 16, 2000, pp.
317-331.

Tanaka, K. and Takizawa, M., “Asyn-
chronous Checkpointing Protocol for Dis-
tributed Object-Based Checkpoints,” Proc.
IEEE ISORC’00, 2000, pp. 218-225.

Tanaka, K. and Takizawa, M., “Quorum-
Based Replication of Objects,” Proc. 3rd

-DEXA Int’l Workshop on Network-Based In-

formation Systems (NBIS-3), 2000, pp. 33—
37..

