goooobooobooobgooo
gooobogobgooobo

Hybrid Concurrency Control for Multimedia Objects

Naokazu Nemoto, Katsuya Tanaka, and Makoto Takizawa

Tokyo Denki University
E-mail {nemoto, katsu, taki}@takilab.k.dendai.ac.jp

Abstract

It is critical for applications to obtain enough quality of service (QoS) from multimedia objects.
Not only states but also QoS of objects are changed by performing methods. The objects are required
to be consistent in presence of concurrent manipulations by multiple transactions. We discuss new
types of consistency of multimedia objects with respect to QoS. Since it takes a longer time to perform
a method on multimedia objects, the throughput of the system is decreased if objects are exclusively
locked in traditional concurrency control. We propose a hybrid concurrency control with two orthogonal
mechanisms, locking one for serializing transactions and the timestamp ordering one for mutually exclusive
access to objects.

RILFATATHATOo MIBITHREAHIEFE
WA EH— HP P R
BB P EL L2 i s A7 A L F
E-mail {nemoto, katsu, taki}@takilab.k.dendai.ac.jp

ST TV = a CCHEROYATF AT AT AT V=7 NBIEES NS, Y AF AT AT AT V=
I RTIE, AY Yy ROFETICEY, ATV FDRAEL L HITAT V=7 FORMT S QoS bELT 5,
AL TIE, Bzl QoS #BE L HEM OB AR E ERXT 5, /2. A7 V=7 bORIBETHIE S

A& LT, B TREME Z RIS 5 72 0 ORFZIFNNAT J7 2 & HEt i 217 5 7o D » 7 HalaE L5

ZRET D,

1 Introduction

N gV (P SN

Distributed applications, are now realized in an
object-based framework [10,12]. A system is com-
posed of objects including multimedia objects. An
object is an encapsulation of data and methods
for manipulating the data. Service supported by
a multimedia object is characterized by parame-
ters showing quality of service (QoS) [3,4,13] like
frame rate and number of colours. Not only the
state but also QoS of the object are changed if
methods are performed on the object. For ex-
ample, suppose a movie object supports a pair
of methods add-car and grayscale. A car ob-
ject is added to the movie object by add-car. A
mouvte is changed to a monochromatic version by
grayscale. If grayscale is performed after add-
car, every object is monochromatic in the mowie.
On the other hand, if the coloured car is added by
add-car after grayscale, only the car is coloured

but the others are monochromatic in the mouvie.
If the application is not interested in the colour,

both the mouvies are considered to be consistent
from the QoS point of view. A pair of methods

con flict iff the result obtained by performing the
methods depends on the computation order of the
methods. A pair of methods are compatible iff
the methods do not conflict. Hence, add-car and
grayscale do not conflict even if the states ob-
tained are different.

Multiple transactions simultaneously manipu-
late multimedia objects in applications like coop-
erating authoring systems. According to the tra-
ditional concurrency control theories [1], a pair
of conflicting methods on an object are serially
performed by using locking protocols. It takes
a longer time to perform a method on a multi-
media object because a larger amount of struc-

ge7d

VAT LDAN—T" NAE] EEIIND,

tured data are manipulated. Hence, the through-
put of the system is decreased if objects are ex-
clusively locked. A pair of compatible methods
like read methods can be performed in any or-
der and concurrently. However, a pair of com-
patible methods add-car and grayscale cannot be
concurrently performed on a counter object. Fur-
thermore, even some pair of conflicting methods
can be concurrently performed while it is critical

to decide which methods to be started before the
other. Thus, we have to realize the serializabil-

ity of conflicting methods and mutually exclusive
computation of methods. We adopt two different
types of concurrency control mechanisms; times-
tamp ordering (TO) scheduler [1] and the locking
protocol [1]. The TO scheduler is used to serialize

methods which conflict with each other with re-
spect to the QoS-based conflicting relations. The

locking protocol is used to exclusively perform
methods. We discuss types of lock modes based
on the QoS-based relations.

In section 2, we present a system model. In
section 3, we discuss the QoS-based conflicting re-
lations among methods. In section 4, we discuss
concurrent manipulation of objects. In section 5,
we discuss the TO scheduler and locking protocol.

2 System Model

A system is composed of classes and objects.
A class c is composed of attributes and methods.
An object o is created from the class c¢. A tuple
of attribute values is a state of the object 0. Each
object has one state at a time. A state of a class
also means a state of an object of the class. An
object has a unique invariant identifier while its
state is variant.

A new class ¢z can be derived from an existing

10400 12

研究会Temp
マルチメディア通信と分散処理

研究会Temp
104－12

研究会Temp
（２００１． ９．１４）

研究会Temp
－67－

class c¢1. In addition, a class ¢ can be composed
of component classes ci, ..., ¢,. Let c.c; show a
component class ¢; of the class c. Let ¢;(s) denote
a projection of a state s of the class ¢ to a compo-
nent class ¢;. For example, a class karaoke is com-
posed of three component classes, music, words,
and background [Figure 1]. background(k) shows
a state of background in a state k of a karaoke
object. The background class is furthermore com-
posed of car, tree, and cloud classes.

Figure 1: Karaoke class.

On receipt of a request of a method op, op is
performed on an object o. Let op(s) denote a
state obtained by performing op on a state s of
the object o. Let [op(s)] show output obtained by
performing op on s. Here, op; o opy and op; @
op2 show that a pair of methods op; and opy are
serially and concurrently performed, respectively.

Applications obtain service from a multimedia
object only through methods supported by the ob-
ject. Fach service is characterized by quality of
service (QoS) like level of resolution. Each state s
of an object o supports QoS denoted by Q(s). For
example, Q(play(s)) shows QoS of music, sound,
and background image played on a state s of a
Karaoke object. Q(s) indicates QoS of the state
s of the Karaoke object. Q(s1) dominates Q(s2)
(Q(s1) = Q(s2)) iff a state s; supports better
QoS than another state sy. For example, (30[fps],
16[colours]) < (40, 64). The formal definition of
the dominant relation < is discussed in the pa-
pers [6]. Since “=7” is a partially ordered relation,
a least upper bound (lub) g1 U g2 of QoS g1 and
g2 is some QoS ¢3 in S such that 1) ¢; < ¢3 and
q2 = g3, and 2) no QoS ¢4 where q1 < g4 < g3 and
g2 < q4 = q3. For example, (30, 1024) U (40, 512)
= (40, 1024). Not only the state but also QoS
of the object are changed by methods. An ap-
plication requires an object to support some QoS
which is referred to as requirement QoS (RoS).
Let r be RoS of an application. If Q(play(s)) =
r, the application can accept the Karaoke service
supported thought the method play.

3 QoS Based Compatible Relations

3.1 Consistent relations

An object ky created from the karaoke class
is also composed of a music object my, words
object w1, and background object b;. Another
karaoke object ko is same as ki except that the
background object of ks is ba (# b1). An appli-
cation considers ki and ks to be consistent since
the application is interested in only words and
music. A class of application’s interest is referred
to as mandatory. The classes words and music
are mandatory. On the other hand, a class like
background is optional, in which applications are
not interested. The state k1 is semantically con-
sistent with ks since the mandatory objects are

0680

the same, i.e. m; = ms and wy = ws. An ap-
plication specifies whether each component class
¢; is mandatory or optional. Every object o of
the class ¢ is required to include an object o; of
a mandatory class ¢;. If ¢; is optional, the object
o may include no object of ¢; and the application
does not care QoS of ¢; even if the object of ¢; is
included in o.

There are following types of consistent relations
between a pair of states s; and s, of a class c:

e s, is state-consistent with s, (s — sy) iff s
= Sy

° 5 is semantically consistent with s, (sy =
su) iff 8¢ — sy or ¢i(st) = c¢i(sy) for every
mandatory component class ¢; of the class c.

o s is QoS-consistent with s, (s; & sy) iff s
— 8y or s and s, are obtained by degrading
QoS of some state s of c.

e s; is semantically QoS-consistent with s,
(st = 8y,) iff 8¢ & sy 01 ¢(8¢) =~ ¢(sy).

e s; is r-consistent with s, on RoS r (s; is r-
equivalent with s,,) (s¢ =, s,,) iff s; ~ s, and
Q(st) N Q(sy) = 7.

o s, is semantically r-consistent with s, (s; =,
su) iff 8¢ —p sy o1 ¢i(8t) = ci(Su)-

Let R be a set of RoS. Let =g and ~p show
sets { = |r € R} and { =, | r € R } which are re-
ferred semantically R- and R-consistent relations,
respectively. Here, let State, Sem, QoS, R, Sem-
QoS, and Sem-R show sets of possible state-, se-
mantically, QoS-, R-, semantically QoS-, and se-
mantically R-consistent relations of a class c. Let
C be a family {State, Sem, QoS, R, Sem-QoS,
Sem-R} of the sets of the consistent relations. For
a set o in C, let O, show an a-consistent rela-
tion. For example, Ogepm (or Oz) stands for the
semantically consistent relation =. For a pair of
methods op; and ops of a class ¢, “op1 O, ops”
shows that op1(s) O, opa(s) for every state s of
c. For a pair of sets a and 3 in C, a dominates 3
(o —) means a C 3, showing that s Og so if
s1 O s9 for every pair of states s; and so. Fig-
ure 2 shows a Hasse diagram where a node shows

a set of consistent relations in C' and a directed
edge from « to (3 shows a dominant relation “a —

(7. For example, “State — Sem” means that s;
= s9 if s1 — s for every pair of states s; and ss.

CSem-r T QoS D

Figure 2: Hasse diagram.

3.2 Compatible relations

According to the traditional theories [1,7], a
method op; conflicts with another method op, on
an object o iff the result obtained by performing
the methods op; and op, depends on the compu-
tation order the methods. The result means not

研究会Temp
－68－

only the state of the object but also the outputs of
op: and op,,. Multimedia objects are characterized
by QoS in addition to the states. The compatible
relation between a pair of methods op; and op,, of
a class ¢ can be extended by considering QoS as
follows:

e op; is state-compatible with op,, (op; | op,) iff
(Opt © Opu) - (Opu © Opt)-

e op; is QoS-compatible with op, (opy R opy)

iff (ope © opu) = (0pu © opy).

e op; is r-compatible with op,, on RoS r (op: .

opy) iff (opy o opy) =~ (opy © opy).

e op; is semantically compatible with op, (op;

I opu) iff (opy © opy) = (0pu © opy).
e op; is semantically QoS-compatible with op,
(op¢ 2 opu) iff (opy © opu) = (opy © opy).

e op; is semantically r-compatible with op,, (op;

|H7‘ Opu) iff (Opt o Opu) =r (Opu o Opt)-

Let “a-compatible relation (Og)” show some of
the compatible relations where o« € C' (={State,
Sem (semantically), QoS, R, Sem-QoS, Sem-R}).
op1 Cq ope iff (op1 o opa) O, (op2 o op1). For
example, Cgos shows a QoS-compatible relation
(2) and <, shows an r-compatible relation (|)
on some RoS r in R. opy a-conflicts with op, (opy
P 0py) unless opy Oq 0py. Oy and P, are
symmetric and transitive.

[Example 1] Let us consider the background ob-
ject b in the karaoke object k [Figure 1]. The
object b is a wvideo object composed of compo-
nent objects, a car object ¢, tree t, and cloud
c. The object b supports methods add, grayscale,
mediascale, and reduce. Suppose that a car ob-
ject is newly added in the background object
by the method add-car. Here, the state of the
background object is changed by add-car. A
coloured video is degraded to a white-black grada-
tion video by the method grayscale, a frame rate
is reduced to half of the original one by medias-
cale, and a number of colours is decreased to 16
colours by reduce. QoS of the background ob-
ject is manipulated by these methods. Suppose
an application obtains a state b; by performing
grayscale on the object b after add-car, i.e. by =
add-car o grayscale(b). Here, by shows a white-
black gradation video with car. On the other
hand, another background state by is obtained by
grayscale o add-car(b), by shows a coloured car
with the white-black tree and cloud. Here, states
obtained by add-car o grayscale and grayscale
o add-car support different levels of QoS, Q(b2)
Q(b1). Hence, add-car QoS-conflicts with
grayscale (add-car W grayscale). Suppose that
the application is only interested in a coloured
car. Let r show the RoS. The response data ob-
tained by grayscale o add-car satisfies the appli-
cation requirement RoS r. However, a response
data obtained by add-car o grayscale does not sat-
isfy RoS r. That is, add-car Sem-r-conflicts with
grayscale (add-car |f|, grayscale). Here, suppose
there is another RoS 7’ showing that an applica-
tion is not interested in colour of a background
object. Since a result obtained by add-car o
grayscale is considered to be r’-consistent with
grayscale o add-car with respect to RoS r’. Thus,
add-car is r’-compatible with grayscale (add-car
R, grayscale). O

Let CF be a set { $o | a € C} of conflicting
relations. For a pair of consistent relations o and
B in C where a — 3, op;y Po 0py if opr Po 0Dy-

4 Concurrent Manipulation of Con-

flicting Methods
4.1 Traditional locking protocol

Suppose a pair of transactions 7; and 7} issue
methods op; and op,, to an object o of a class ¢, re-
spectively. Here, T; precedes T; (T; — Tj) iff op,
and op, conflict, i.e. op; and op, State-conflict
(opt |/opy) and opy is performed before op,. A
collection of transactions Ti, ..., T, are serializ-
able iff both T; — T} and T; — T; do not hold
for every pair of transactions T; and T}, i.e. the
relation “—” is acyclic [1]. In order to serialize
the transactions, each object o is locked before a
method is performed on the object 0. Suppose a
method op; is issued to the object o. If the ob-
ject o is locked for a method conflicting with the
method op;, op; blocks. It is well known that a
collection of transactions are serializable if every
transaction is locked in a two-phase mode [1]. Ev-
ery pair of compatible methods can be performed
on the object o in any order.

Multiple conflicting methods cannot be concur-
rently performed on an object. It is still ques-
tion whether or not compatible methods can be
concurrently performed. Some compatible meth-
ods like a pair of read methods can be concur-
rently performed on the file object. On the other
hand, methods add and subtract cannot be con-
currently performed on a counter object while the
methods are compatible. A pair of methods add-
car and grayscale are r’-compatible (add-car Q..
grayscale) where RoS r’ shows “application is not
interested in colour” but cannot be concurrently
performed on the movie object as shown in Exam-
ple 1. Thus, a pair of orthogonal synchronization
mechanisms are adopted, one for serialization of
conflicting methods and the other for mutually ex-
clusive computation methods.

4.2 «-conflicting relations

If a pair of methods op; and op, a-conflict on
an object o (opr P 0py), the result obtained by
performing the methods op; and op, depends on
the computation order of the methods. Figures 3
(1) and (2) show serial computations of reduce and
mediascale. Figure 3 (3) shows a concurrent com-
putation reduce @ mediascale. Here, the states
obtained by the computations (1) and (2) are r-

consistent but reduce and mediascale cannot be
concurrently performed. On the other hand, a

pair of display methods can be performed in any
order since display is state-compatible with itself.
In addition, multiple display methods can be con-
currently performed because multiple transactions
can view the background object b at the same
time. The traditional concurrency control theo-
ries in database systems [1] assume every pair of
conflicting methods like write and read are mutu-
ally exclusive while other compatible methods like
a pair of read methods can be concurrently per-
formed. However, some pair of compatible meth-
ods cannot be necessarily concurrently performed
on a multimedia object as shown in Figure 3. Fur-
thermore, some pair of conflicting methods can be
concurrently performed on the multimedia object

0690

研究会Temp
－69－

while it is critical to consider which method to be
started before the other.

e reduce mediascale

2) O mediascale reduce

5 reduce

(3) Time
mediascale

Figure 3: Concurrent computation.

A method op; is a-exclusive with another
method op, on a class ¢ with respect to a con-
sistent relation « in C' iff some concurrent compu-
tation op; @ opy, is neither a-consistent with (opy
o opy) nor (op; o opy). Unless op; is a-exclusive
with op,, every result obtained by concurrently
performing op; and op,, is a-consistent with some
result obtained by serially performing op; and opy,.
The a-exclusive relation is symmetric and transi-
tive.

[Definition] Let op; and op,, be methods of a class
c. For every consistent relation « in C';

1. opy strongly a-con flicts with op,, on c iff op;
a-conflicts with op, and op; is a-exclusive
with opy,.

2. op; weakly a-con flicts with op, on c iff op;
a-conflicts with op,, and op; is not « exclusive
with opy,.

3. op is strongly a-compatible with op, iff op;
is a-compatible with op; and op; and op,, are
not a-exclusive.

4. A op; is weakly a-compatible with op,, iff op;
is a-compatible with op, and op; and op, are
not a-exclusive. O

The traditional conflicting relation shows the
strong conflicting relation. A pair of methods
reduce and mediascale are weakly r-compatible
on a background object because reduce and
mediascale are r-compatible but cannot be con-
currently performed.

4.3 Modes of methods

A pair of consistent relations a7 and as in C'
are uncomparable (v || az) if neither a3 — aq
nor oy — «1. In Figure 2, Sem || R, Sem || QoS,
and Sem-R || QoS. For every pair of consistent
relations a1 and as in C, ap N ao shows a greatest
lower bound (glb) of oy and ag in the dominant
relation “—” shown in Figure 2. For example, r
= Sem-r N QoS since r — Sem-r and r — QoS

hold and are not transitive. Each transaction T’
takes some type a of consistent relation specified

by an application. Let type(T) show the consis-
tent type a of a transaction 7. The transaction T'
issues a method op to an object 0. A method is-
sued by a transaction has a same consistency type
as the transaction. Here, let type(op) show the
consistent type of a method op which is type(T)
of a transaction 7" which issues up. If a pair of
transactions T and T5 issue a method op on the
object o, each instance of op has a different type
depending on a type of the transaction issuing op.
o (0p) is referred to as mode of a method op on a
consistent relation a. Here, a conflicting relation
among modes is defined as follows:

o, (0p1) a-conflicts with pg,(op2) with re-
spect to a consistent relation « in C' if op;

a-conflicts with opa (op1 ¥4 op2) where «
= a1 U as.

A mode 7 is a-compatible with another mode
7 iff 7 does not a-conflict with 7'. Let Cy (1) be
aset { 77 | 7 &’-conflicts with 77 and a — o’} of

modes which conflict with a mode 7 for a consis-
tent relation a. If an object is locked with some
mode in C,,(7), a method of a mode 7 with a con-
sistent relation a blocks. The following property

“ ”

holds for the dominant relation “—” on the con-
sistent relations’ sets.

[Theorem] For every mode 7 and every pair of
consistent relations a; and as in C, Cy, (1) C
Coo(T) if 1 — 3. O
[Definition] Let 7 and 7» be a pair of modes on
consistent relations « and as in C', respectively.
71 I8 stronger than m (11 >) iff Cy,(11) C
Ca2(7'2>. a

Suppose that a pair of RoS r; and ry show
monochromatic and coloured movies, respectively,
in Example 1. Here, 72 > r1. A method
grayscale ri-conflicts with a method add but is
ro-compatible with add. The method grayscale
is stronger than mediascale (11 > 72) since
Cyr, (11) (= {mediascale, reduce, add, grayscale})
D Cry(m2) (= {mediascale, reduce, grayscale}).
The relation “r1 > 79” means that a mode 71 con-

flicts with more number of modes than another
mode 7». The mode 7 is more restricted than 7.

For example, write > read.

5 Concurrently Control

5.1 Timestamp ordering(TO) sched-
uler

Each object is provided with two types of con-
currency control mechanisms; a timestamp order-
ing (TO) scheduler [1] and locking protocol [1]
[Figure 4]. The TO scheduler is used to serialize
every pair of a-conflicting methods issued to an
object, which are issued by different transactions.
The object is locked by the locking mechanism
in order to realize mutual exclusion among meth-
ods. Each transaction 7T is assigned a timestamp
ts(T) which shows a local time when T is initi-
ated. Transactions are initiated in client comput-
ers. Some kind of logical clock like linear clock [§]
can be used as the timestamp. If the logical times
of T1 and Ty are uncomparable or equal, the times-
tamp of T4 is smaller than Tb (ts(Th) < ts(T3)) if
the address of the client computer of 77 is smaller
than T>. The timestamp can be realized by a
concatenation of the local time and the computer
identifier [1]. For every pair of different transac-
tions Ty and Th, either ts(T1) < ts(Tz) or ts(T) >
ts(Ty). Every method op issued by a transaction
T carries the timestamp ts(T), i.e. ts(op) = ts(T).
We assume each transaction issues a method by
using a synchronous remote procedure call. That
is, each transaction issues at most one method at
a time and waits for a response of the method.

Each transaction 7' manipulates objects ac-
cording to some consistent relation a in C
(type(T) = «). T issues a method op, where
type(op) = type(T). Transactions issue requests of
methods to the TO scheduler of an object o. The

methods are buffered and are ordered in the TO
scheduler according to the following timestamp or-

g 700

研究会Temp
－70－

dering (TO) rule:

[Timestamp ordering (TO) rule] For every
pair of methods op; and ops on an object o, opy
precedes ops in the TO scheduler (op; =, ops) if
op1 a-conflicts with opy (op1 $a op2), ts(opr) <
ts(op2), and a = type(op1) N type(opz). O

]
object TO schedule/“/ :

a-exclution lock]

Figure 4: TO scheduler and locking.

Suppose there are a pair of transactions T3
and Ty where ts(Ty) < ts(Ty). The transac-
tion T issues a method grayscale and the other
transaction 75 issues another method add-car to
the background object b. Suppose type(11) =
type(Tz) = QoS. Since grayscale QoS-conflicts
with add-car, Ty QoS-conflicts with Ty. grayscale
has to precede add-car in the TO scheduler
(grayscale =y, add-car) since ts(grayscale) <
ts(add-car). Next, suppose type(T;) = QoS and
type(15) = r where RoS r shows “application
not interested in the colour of a car.” QoS
N r = r since grayscale and add-car are r-
compatible (grayscale 0, add). Hence, add-car
=, grayscale even if ts(grayscale) < ts(add-car).

First, suppose a transaction 7T issues a method
op to the TO scheduler of an object o. There is
a variable mts(op) showing the timestamp of a
method op which is most recently started on the
object o. The variable mts(op) is initially 0. The
method op is stored in the TO scheduler according
to the ordering rule as “op’ precedes op (op’ =,
op)” if mts(op’) < ts(op) for every method op’ a-
conflicting with the method op. Otherwise, op is
rejected and then the transaction T is aborted.

The number of transactions can be reduced to be
aborted if a top method op of the TO scheduler is

delayed as discussed in the paper [1]. In the TO
scheduler, every pair of a-conflicting methods are
ordered in the timestamp order. If some pair of
methods op; and ops are a-compatible, op; may
precede opa (0p1 =, op2) even if ts(op1) > ts(op2).
5.2 Serializability

Let T; and T be a pair of transactions issu-
ing methods op; and op; to an object o, respec-
tively. The transaction T; a-precedes T; with re-
spect to a consistent relation a (T; % Tj) iff op;
a-conflicts with op; (op; $a op;j) where o =
type(1;) N type(1;) and op; is started before op;

on the object 0. In addition, “%” is transitive.

[Theorem] A transaction T; o/-precedes another
transaction T} (T; o T;) with respect to a consis-
tent relation o/ if T; % T and o — a. O
[a-Serializability] A collection T of transactions
Ty, ---, T, are a-serializable with respect to a
consistent relation « if both T; = T and T; = T;
do not hold for every pair of transactions T; and
T; where a = type(T;) N type(T;). O

Let State, Sem, QoS, R, Sem-QoS, and Sem-

@—D ‘—@ < D transactions

R be sets of possible transactions which are State,
Sem, QoS, R, Sem-QoS, and Sem-R serializable,
respectively. Let SR be a family {State, Sem,
QoS, R, Sem-QoS, and Sem-R} of the transac-
tion sets. For a pair of transaction sets a1 and s
in SR, oy — as shows a1 C as. Let T be a set
of {Ty, ..., T,,} of transactions. Suppose a1 — aq
for a1, ap € SR. T is ao-serializable if T is «aq-
serializable. For example, T is QoS-serializable
if T is State-serializable. The Hasse diagram for
SR and — is isomorphic with Figure 2.

[Serializability] A set T of transactions is
serializable iff % is acyclic for every consistent
relation o. O

5.3 Locking protocol

Methods in the TO scheduler are ordered ac-
cording to the TO rule. A top method op in the

TO scheduler is first taken. We have to decide
whether or not op can be performed on the object

0. A variable R, shows a set of methods which are
being performed on the object o. If op satisfies the
following execution rule, op is removed from the
TO scheduler and is performed on the object o:

[Execution rule] If one of the following rules is
satisfied, op is performed on an object o,
1. R, is empty.
2. If R, is not empty, op is not a-exclusive with
every method op’ in R, where o = type(op)
N {type(op’) | op’ € Ro}. O

If the method op satisfies the execution rule, op
is started and is added to R,. If op completes, op
is removed from R,.

In order to realize the execution rule, the lock-
ing mechanism is adopted. For a top method op in
the TO scheduler, a lock request of a mode 114 (0p)
is issued to the object o where o = type(op). For
every method op’ in R,, if pq(op’) is not o'-
exclusive with pu, are o” = o/ N «a, the object
o is locked in the mode (4 (0p). If succeed in lock-
ing the object o, the method op is started per-
formed and op is added to R,. Here, mts(op) is a
maximum one of ts(op) and mts(op), mts(op) :=
max(ts(op), mts(op)). Otherwise, the method op
is kept waited in the TO scheduler.

Suppose the top method op in the TO scheduler
does not satisfy the execution rule. The method
op has to stay in the TO scheduler. Until the top
method satisfies the execution rule, i.e. the object
is locked, every method has to wait in the TO
scheduler. In order to increase the throughput,
another methods than the top method is tried to
be performed. A method which is a-compatible
with op and preceded by op in the TO scheduler
can be performed on the object o.

[Definition] A method op is a-ready in the TO
scheduler of an object o with respect to a con-
sistent relation « iff every method op’ preceding
op is a-compatible with op and a = type(op) N
type(op’). O

An a-ready method op is referred to as top a-
ready method in the TO scheduler iff op precedes
every other a-ready methods in the TO scheduler.
If the top a-ready method op satisfies the execu-
tion rule, op is removed from the TO scheduler
and then is performed on the object o. This is
repeated until there is no a-ready method in the

g 710

研究会Temp
－71－

TO scheduler.

If a method op completes and the lock of op is
released, the procedure presented here is applied
from the top method in the TO scheduler.

T] T2

oph P8 OP2 opy

Figure 5: Concurrent access.

5.4 Commitment

We discuss how a transaction terminates.
A transaction issues special types of methods
commit(c) and abort(a) to objects in addition to
methods to manipulate the objects. Suppose a
transaction T issues methods op1, - -+, opy to an
object o. After the methods opy, ---, op,, are
performed on the object o, the transaction 1" is-
sues a commit method ¢ to the object o, and the
commit method c¢ is performed on the object o.
Here, the locks held by the methods op1, - -+, opm
are released. Similarly, the locks are released of
abort(a) is performed. That is, a strict two-phase
locking protocol [1] is adopted. Each of commit
and abort methods is timestamped as well as the
other methods.
[Definition] Let e; and ez be commit or abort
methods of an object o issued by transactions 13
and Ty, respectively. e; precedes e; in the TO
scheduler (e; Rightarrow, e3) if ts(e1) < ts(ez)
and T a-conflicts with 75 when o = type(T1) N
type(Ts). O

Suppose a top method is a commit method ¢ of
a transaction T in the TO scheduler of an object
o. If the commit ¢ satisfies the execution rule, ¢
is removed. The object o is physically updated
and the lock of the object o is released. If the
top method is an abort method a, the lock of the
object o is just released.

5.5 Implementation of lock modes

In this paper, we assume each component class
of a class is defined to be either mandatory or
optional by a designer. Based on the types of
the component classes, a semantically conflicting
relation among methods is defined for each class.

Each transaction 7' has its own RoS type(T).
It consumes plenty of computation power to com-
pare arbitrary RoS instances. Hence, we assume
some limited number of RoS instances are speci-
fied when the objects are defined in order to re-
duce the computation overhead. Let RP be set of
RoS profiles. Each transaction T' takes one pro-
file in RP which satisfies RoS, i.e. type(T) € RP.
The profiles in RP are ordered in the dominant
relation <. The ordering relation is predefined in
the table when RP is defined. For every pair of
profiles r1 and rs, it is easily decided whether rq
=< 19, ra < 71, or r1 || r2 by searching the table.
Each object maintains a table showing the con-
flicting relations among the methods. By using
the conflicting table, it is decided if the method
issued to the object can be performed on the ob-
ject.

6 Concluding Remarks

We discussed novel types of conflicting and ex-
clusive relations among methods on the basis of
QoS and the state of an object, i.e. state-, se-
mantically, QoS-, R-, and semantically QoS- and
R-conflicting and -exclusive relations of methods
in the object-based multimedia system. We pre-
sented the TO scheduler and the locking protocol
to realize these new types of conflicting and exclu-

sive relations. The TO scheduler is used to seri-
alize the transactions based on the a-conflicting

relations. By using the TO scheduler and a-
exclusive locks, we can increase the performance
of the system.

References

[1] Bernstein, P. A., Hadzilacos, V., and Good-
man, N., “Concurrency Control and Recov-
ery in Database Systems,” Addison-Wesley,
1987.

[2] Cambell, A., Coulson, G., Garcfa, F., Hutchi-
son, D., and Leopold, H., “Integrated Quality
of Service for Multimedia Communication,”
Proc. of IEEE InfoCom, 1993, pp.732-793.

[3] Campbell, A., Coulson, G., and Hutchi-
son, D., “A Quality of Service Architecture,”
ACM SIGCOMM Comp. Comm. Review,
Vol. 24, 1994, pp.6-2T7.

[4] Gall, D., “MPEG: A Video Compres-
sion Standard for Multimedia Applications,”
Comm. ACM . Vol.34, No.4, 1991, pp.46-58.

[5] Grosling, J. and McGilton, H., “The Java
Language Environment,” Sun Microsystems,
Inc., 1996.

[6] Kanezuka, T. and Takizawa, M., “Quality-
based Flexibility in Distributed Objects,”
Proc. of 1st IEEE Int’l Symp. on Object-
oriented Real-time Distributed Computing
(ISORC"98), 1998, pp.350-357.

[7] Korth, H. F., Levy, E., and Silberschalz, A.,
“A Formal Approach to Recovery by Com-
pensating Transactions,” Proc. of VLDB,
1990, pp.95-106.

[8] Lamport, L., “Time, Clocks, and the Or-
dering of Events in a Distributed System,”
CACM, Vol.21, No.7, 1978, pp.558-565.

[9] Nemoto, N., Tanaka, K., and Takizawa, M.,
“QoS-based Synchronization of Multimedia
Objects,” Proc. of the 11th Int’l Conf. on
Database and FEzxpert Systems Applications
(DEXA’00) (Lecture Notes in Computer Sci-
ence, Springer-Verlag, No. 1873), 151 160,
2000.

[10] Object Management Group Inc., “The Com-
mon Object Request Broker: Architecture
and Specification, Rev2.0,” 1995.

[11] Owen, C. B. and Makedon, F., “Com-
puted Synchronization for Multimedia Appli-
cations,” Kluwer Academic, 1999.

[12] Tari, Z. and Bukhres, O., “Fundamentals of
Distributed Object Systems,” Wiley, 2001.

[13] Wang, Z., “Internet QoS”, Morgan Kauf-
mann, 2001.

g 720

研究会Temp
－72－

