
例外的な通信シーケンスを生成する

TCP試験システムを用いた SACKの実装の評価

大岸 智彦 長谷川 亨 加藤 聰彦

KDDI研究所

TCP はインターネットにおいて広く普及しているが、なお新しい仕様が提案され実装され
ており、新旧の実装間の通信に不具合が生じる可能性が考えられる。このため、通信システ
ム内の TCP の実装を試験することが重要がある。これを行うには、テスト系列の生成に労
力を要しない試験システムが必要となる。筆者らは、例外的な通信シーケンスのみをテスト
シナリオに記述することで、TCP の試験を行うシステムを開発した。本システムは、テス
トシナリオに記述された条件が満たされた場合のみ、例外的な通信シーケンスを実行する。
本システムは、PSCが開発した NetBSD上の SACKを含むカーネル内 TCPモジュールを変
更することにより実装している。筆者らは、本システムを用いて SACKの実装を評価した。

Evaluation of SACK Implementation using TCP Test System

Generating Exceptional Packet Sequence

Tomohiko Ogishi, Toru Hasegawa and Toshihiko Kato

KDDI R&D Laboratories

Although TCP is widely used in Internet, new specifications are still proposed and implemented. In
the circumstance above, it is highly possible that some errors are detected on the communication
between new and old implementations. Several tools for testing TCP implementations were
developed so far. However, they does not have enough function to customize test sequence or need
significant effort to specify the sequence. We developed a TCP test system which specifies only
exceptional packet sequence in the test scenario. The system performs exceptional packet sequence
only when the condition specified in the test scenario is satisfied. Otherwise, it performs ordinary
TCP behavior. The system is implemented by modifying in-kernel TCP module of NetBSD with
SACK code developed by Pittsburgh Supercomputing Center. We also evaluated SACK
implementation as an example of recent specification using the test system.

1. INTRODUCTION

TCP [1] is widely used as a protocol to provide
reliable transfer from the dawn of Internet. The TCP
protocol functions and implementations have been
modified and extended in the long history of TCP.
Currently, the TCP implementations in widely spread
PCs and workstations are fairly stable and the users

seldom feel inconvenience at TCP communications.
However, there are several implementation errors as
reported in [2]. Due to those errors, TCP
communications in specific situations, such as a long
haul TCP communication, suffer from problems like
serious throughput degradation. Those well-known
errors have been fixed in the higher version of
implementations, but, still now, new functions, such

研究会Temp
マルチメディア通信と分散処理

研究会Temp
105－8

研究会Temp
（２００１． １１． １５）

研究会Temp
－41－

as a new congestion control mechanism in NewReno
[3] and the selective acknowledgment (SACK) [4], are
proposed and integrated into available TCP
implementations. It is highly possible that not
detected errors related to conventional functions [5]
and errors related to new functions [3,4] bring new
problems in TCP communications.

In order to detect such errors, some tools for testing
TCP implementation are required. So far, various
tools have been developed [6], which are classified
into two groups, monitors and testers. The monitors
collect packet data exchanged between end systems
and analyzes TCP protocol behaviors. TCPAnaly [7]
and the Intelligent TCP Analyzer [8] are categorized
in this group. However, the monitors cannot control
packet sequences in the testing, and it is not easy to
detect errors in TCP implementations by monitors.
On the other hand, the testers can generate packets
suitable for a specific testing purpose. But, the
testers developed so far [9-11] have some issues to
perform the TCP implementation testing. Among
them, TBIT [9] and Nmap [10] use some predefined
test sequences. The purpose of TBIT is to check the
compliance and used parameter values of TCP
implementations, and that of Nmap is to estimate the
version of operating systems from the TCP behaviors.
That is, those systems do not allow test operators to
use test sequences specific to their test purposes. On
the other hand, [11] proposes a TCP test system which
can generate test sequences based on test scenario
specification written in TTCN [12]. This system
allows test operators to use suited test sequences.
However, the task to generate a test sequence will be a
hard job for test operators because it is required to
specify all input and output events used in the
sequence.

Considering these issues, it is important to reduce
the burden for test operators to specify a test sequence.
When a test operator tries to test a normal behavior of
TCP module in a system under test, it is possible to
use an ordinary TCP module as a tester. A specially
ordered mechanism is used only when a test operator
tries to test an exceptional behavior of TCP.
Therefore, we propose a TCP test system which uses
an ordinary TCP module for testing normal TCP
behaviors and which allows test operators to specify a
test sequence only for testing exceptional TCP
sequences. By using our TCP test system, a test
operator can perform exceptional test sequence, such
as sending SYN segment in ESTABLISHED state,
sending ACK segment with smaller acknowledgment
number, and sending SACK options with the first and
the second SACK blocks misordered. A test
operator does not need to specify normal sequences
but describe exceptional part in a test scenario. The

TCP module in the test system behaves normally if the
condition on a test scenario is not satisfied. If the
condition is satisfied, it runs the actions specified in
the test scenario. It also saves a communication logs
which is examined after the test run is over.

In this paper, we describe the design and the
implementation of the TCP test system. We also
describe the evaluation result of SACK
implementation by using the TCP test system. In
Section 2, we describe the design and the
implementation of our test system. Section 3 and 4
shows an overview of SACK function and the
evaluation of SACK implementation by using the test
system, respectively. Finally, Section 5 makes a
conclusion.

2. DESIGN AND IMPLEMENTAION OF TCP
TEST SYSTEM

2.1. Structure
Figure 1 shows the functional structure of the TCP test
system. The test system is composed by test
execution part and test analysis part as described in
the previous section. The test execution part
includes scenario loader, TCP application program,
in-kernel TCP module and network interface. In the
in-kernel TCP module, scenario interpreter and log
collector are implemented. Scenario loader provides
the operator to configure the test environment. It
selects the test scenario performed at scenario
interpreter and whether the communication log is
collected or not. TCP application program actually
sends or receives user data on TCP by communicating
with server or client program running on system under
test. Scenario interpreter reads the test scenario and
decides whether the action in the test scenario is
executed or not. When the action is executed, it
directly sends the packets described in the action to
network interface through log collector. The

Test Operator

receive
send

communication
log

operation or
viewing result

Scenario
Loader

TCP Test System

TCP module

Test Execution Part

Scenario Interpreter

test scenario

Log Collector

Network Interface

TCP Application Program
upload,

delete or
refer

Test Analysis Part

Log Analyzer

ON/OFF

User Part

Kernel Part

communicating
with system
under test

 Figure 1. Structure of TCP Test System

研究会Temp
－42－

interpreter maintains the scenario counter indicating
the line of test scenario. Log collector is placed on
the network interface and monitors the segments
received from or sent to network interface, and
collects a communication log related to the test. It
also refers to the scenario counter when a segment is
added to the communication log. Log analyzer in
the test analysis part provides the operator to analyze
the communication log.
2.2. Test Scenario

Figure 2 shows an example of test scenario. The
test scenario consists of header and content parts. In
the header part, IP addresses and port numbers for
source and destination, which indicate TCP
connections under test. For example, if 20 is
specified as source port number, the TCP behavior of
FTP data connections becomes the target. In this
case, TCP connections with other source port number
such as FTP control connection or WWW client
behaves without any influence of test scenario. In
other words, the system can protect other application
programs from being affected by the test scenario.
In the header part, TCP options used at connection
establishment and the parameter value of each option
are also specified by using syn-opt key. When the
key is specified, the specified options are forced to be
used in SYN or SYN+ACK segment without
negotiating with peer end system. In the example of
Fig. 2, TCP options are sent with maximum segment
size (MSS) option set 10 bytes, sack permitted option,
timestamp option and window scale factor (WSF)
option set 0.

In the content part, the behaviors after establishing
TCP connection are specified. In the each line of
content part, the condition and the action are specified
by being separated with semi-colon. In the condition,
a trigger event and its parameter values are specified.
There are three types of trigger events, recv, send and
wait, which mean received packet, sending packet and
timer expiration, as described above. In the case of
recv and send events, several expressions such as “=”,
“<=”, “>=”, “>” and “<” can be used with a compared
value. If any is specified as the value, the condition
always becomes true as far as the parameter exists.
At the end of the condition, var-upd which means
whether internal variables related to the received
packet such as rcv_nxt are updated or not is also
specified. If var-upd is OFF at recv event, it
becomes the same situation that the received packet is
lost at network. In the action, a packet to be sent
with its parameter values at a true condition is
specified. All of the parameter values in the TCP
header except urgent pointer and checksum should be
specified in the action. TCP options such as MSS
and SACK are specified with parameter values if the

options are included in the sent packet. At the end of
the condition, var-upd which means whether internal
variables related to the sent packet such as snd_nxt are
updated or not is also specified. If no packet is
desired to be sent, ignore is specified as action. If
multiple packets are desired to be sent at a time, the
second and later actions are specified without
conditions.

2.3. Scenario Interpreter
The flow chart presenting how scenario interpreter

works is illustrated in Fig. 3. Scenario interpreter
maintains a test scenario loaded to the test system. It
examines all packets which are received or going to
be sent and checks whether the TCP connection of the
packet is under test or not. If the connection is under
test, the interpreter checks whether the TCP state is
ESTABLISHED or not. If not, the packet is dealt as
a normal TCP behavior. Only if syn-opt is specified
in the header part of the test scenario and SYN or
SYN+ACK segments is going to be sent, the TCP
options for the sent packet are modified as what

connection under test?

received or sent packets

ESTABLISHED?

scenario counter
reaches end?

SYN or SYN+ACK
 going to be sent?

send SYN or SYN+ACK with TCP
options specified at header

yes

no

yes

no

no

yes

condition satisfied?

end

invoke timer
timer

expiration for
wait

no

execute action

increment scenario counter

end

type of trigger event =
WAIT?
no

behave as normal TCP behavior

yes

no

yes

no conditions?

yes

end

no

end

 Figure 3. Flow Chart for Scenario Interpreter

<header>
src-addr=192.168.0.1
dst-addr=192.168.0.2
src-port=20
syn-opt=mss(10), sack, timestamp, wsf(0)

<content>
recv seq=1 var-upd=ON ; send seq=1 ack=11 flag=(ack) win=20 var-upd=ON
recv seq=11 var-upd=OFF ; ignore
send seq=1 ack=11 var-upd=yes ; ignore
wait 1 ; send seq=1 ack=11 flag=(ack) win=30 var-upd=OFF
recv seq=11 var-upd=ON ; ignore
recv seq=21 var-upd=OFF ; ignore
recv seq=31 var-upd=ON ; send seq=1 ack=21 sack=(31-41) flag=(ack) win=30 var-upd=ON
 ; send seq=1 ack=21 sack=(31-41) flag=(ack) win=30 var-upd=ON
 ; send seq=1 ack=21 sack=(31-41) flag=(ack) win=30 var-upd=ON
 ; send seq=1 ack=21 sack=(31-41) flag=(ack) win=30 var-upd=ON
recv seq>70 var-upd=ON ; send seq=1 flag=(rst) win=30 var-upd=ON

Figure 2. Example of Test Scenario

研究会Temp
－43－

specified at syn-opt before sending it. If the state is
ESTABLISHED, the interpreter maintains the
scenario counter, which indicates the line executed
currently. The counter starts at the first line of the
content part when the TCP state enters
ESTABLISHED and is incremented only when the
condition at the counter is satisfied and the action is
executed. If the counter reaches to the end, further
events are dealt as normal TCP behavior. If the
trigger event is wait, a timer is invoked. The expired
time is set to the number of time slots specified in the
condition. While the timer is working, the following
sent or received events obey to normal TCP behavior.
When the timer is expired, the action for the wait is
executed and the scenario counter is incremented.
Even if the counter reaches to the end, the
communication under test does not finish at the time.
It continues by normal TCP behavior.
2.4. Log Collector

Log collector saves a packet received or going to be
sent to the communication log if the TCP connection
of the packet is under test and the function is set on.
Figure 4 shows a communication log collected at the
test of Fig. 2. The output format is almost same as
that of tcpdump [13]. The differences are as follows:

 The communication log shows the scenario
counter on the top of line for each event.
 The communication log can show the packets

which are not actually sent or received at TCP of
the test system using parenthesis such as line 2
and line 3.
 The communication log shows whether

internal variables are updated or not. If updated,
(var-upd) is added to the line.

2.5. Implementation
We implemented the TCP test system based on

NetBSD 1.3.2 with SACK developed by Pittsburgh
Supercomputing Center (PSC) [14] by modifying its
source code. Scenario loader was implemented as a
user program. Scenario interpreter and log collector
were implemented in the kernel by modifying PSC's

TCP module.

3. OVERVIEW OF SACK FUNCTION

SACK function notifies the sender with a range of
dropped packets accurately by using SACK options
[4], which is the same as that maintained by the
receiver. If the sender implements the retransmission
algorithm effectively, it can theoretically send all
dropped packets in a window in one round trip time
(RTT). Therefore, SACK function becomes
effective between end systems over a link with long
RTT or high packet loss rate such as satellite or
wireless link.

The sender who receives ACK segments with
SACK options retransmits unacknowledged packets
by an algorithm unique to the implementation of
in-kernel TCP module. The pipe algorithm proposed
in [15] is one of the methodologies to realize sender's
behavior.

Recently, an extension to existing SACK options is
proposed [16]. A duplicate SACK segment is sent
when the receiver receives a segment including the
range of sequence number previously received. The
format of duplicate SACK is the same as normal
SACK specified in [4] except it uses older ranges of
sequence number in SACK block relative to the
acknowledgement number. Since the use of
duplicate SACK was recently specified, it seems there
were few implementations to support this. It is
mentioned that the latest Linux implementation
supports it.

4. EVALUATION OF SACK IMPLEMENTATION

We evaluated SACK implementations in various
operating systems using the implemented TCP test
system. Figure 5 shows the network configuration of
this test. We attached a network simulator between
the test system and the system under test, and inserted
one-second round trip delay in order to examine how
the congestion control works. We used ftp as
application program and created a file of 16 Kilobytes
at the system under test and sent the file to the test
system. We tested the sender's behavior when ACK
segments with SACK options (which we call SACK

 0: 0.000000 SYN seq=3,325,424 win=32,768 mss=1,460 sack-permitted timestamp wsf=0
 0: 0.000128 SYN+ACK seq=1,783,630 ack=1 win=32,768 mss=10 sack-permitted timestatmp wsf=0
 0: 0.000233 ACK seq=1 ack=1 win=32,768 (var-upd)
 1: 0.001733 DATA seq=1 ack=1 win=32,768 len=10 (var-upd)
 1: 0.001855 ACK seq=1 ack=11 win=20
 2: 0.001934 (DATA seq=11 ack=1 win=32,768 len=10)
 3: 0.002018 (ACK seq=1 ack=11 win=8,760) (var-upd)
 4: 0.478445 ACK seq=1 ack=11 win=30
 5: 3.712842 DATA seq=11 ack=1 win=32,768 len=10 (var-upd)
 6: 3.712932 (DATA seq=21 ack=1 win=32,768 len=10)
 7: 3.713015 DATA seq=31 ack=1 win=32,768 len=10 (var-upd)
 7: 3.713099 ACK seq=1 ack=21 sack=(31-41) win=30 (var-upd)
 8: 3.713131 ACK seq=1 ack=21 sack=(31-41) win=30 (var-upd)
 9: 3.713148 ACK seq=1 ack=21 sack=(31-41) win=30 (var-upd)
10: 3.713166 ACK seq=1 ack=21 sack=(31-41) win=30 (var-upd)
11: 3.713275 DATA seq=21 ack=1 win=32,768 len=10
11: 3.713383 ACK seq=1 ack=41 win=8,760
11: 3.713425 DATA seq=41 ack=1 win=32,768 len=10
11: 3.713499 DATA seq=51 ack=1 win=32,768 len=10
11: 3.713548 ACK seq=1 ack=61 win=8,760
11: 3.713552 DATA seq=61 ack=1 win=32,768 len=10
11: 3.713631 DATA seq=71 ack=1 win=32,768 len=10
11: 3.713693 RST seq=1 win=30 (var-upd)
end:3.713755 DATA seq=81 ack=1 win=32,768 len=10
end:3.713830 RST seq=1 win=8,760

Figure 4. Example of Communication Log TCP Test
System

(NetBSD 1.3.2)

Peer End System
[SUT]

(in various OS)

Network Simulator
(round trip delay = 1 second)

FTP data traffic

commnunication log

Figure 5. Network Configuration for SACK Testing

研究会Temp
－44－

segments) are received. The operating systems we
tested are SPARC Solaris 2.6 with SACK patch
(which we call Solaris 2.6), Intel Solaris 8 (which we
call Solaris 8), Linux kernel 2.4.2 (which we call
Linux), NetBSD 1.3.2 with SACK code developed by
PSC (which we call NetBSD), and Windows 98
Second Edition (which we call Windows 98). We
performed three different tests described in the
following subsections.
4.1. Multiple Drops in a Window

We tested retransmission algorithm using the test
scenario depicted in Fig. 6. This test scenario sets
MSS as 100 bytes and emulates drops at network of
every other packet after congestion window extends
enough. Since the actions for received packets such
as the packet with its seq 3501, the test system sends
SACK segments against each packet received in this
RTT. The aim of the test is to examine how the
sender behaves to multiple drops.

Table 1 shows the result of the test. Each column
represents the operating system (OS), total elapsed
time to transmit 16 Kilobytes, initial congestion
window (ICW) used at slow start, number of ACK
segments the SUT received before receiving duplicate
ACK and RTT taken for retransmitting 6 dropped
packets. Through this test, we found following facts
and problems:

 All implementations deal with SACK options
to retransmit dropped packets. If the
retransmission algorithm for SACK were not
implemented, it might take six RTTs to retransmit
all of the dropped packets.
 Solaris 8 took two RTTs and Windows 98

took three RTTs to recover from dropped packets.
However, we can not say the retransmission
algorithms of these operating systems were worse
than those of others. For example, when we set
the ICW of Solaris 8 to 2, the RTT becomes one
like others. From another test which drops 1501,
1701 and 1901, Linux took two RTTs while
Solaris 2.6 and NetBSD took one. We think RTT
taken to recover from multiple drops is highly
related to ICW and number of ACK because these
values decide the value of congestion window
when the congestion occurs.
 We found typical implementations, which are

inconsistent with [17], on Linux, Solaris 2.6 and
Window 98. All of them seem to inflate window
before receiving three duplicate ACK segments.
In addition, Linux retransmits faster (by one
duplicate ACK in this test) than other
implementations when it receives SACK segments.
Since Windows 98 sent only 96 bytes when it
retransmitted the packet with its seq 4001, it took
another one RTT to retransmit the rest of 4 bytes.

Table 1. Result for Multiple Drops in a Window
OS Total Time

(second)
Initial
Congestion
Window

number
of ACK

RTT

Solaris 2.6 15.1 2 23 1
Solaris 8 14.1 4 23 2
Linux 15.2 2 24 1
NetBSD 16.1 2 23 1
Windows 98 17.3 2 24 3

4.2. Delay and Loss of SACK
SACK segments may not be arrived in correct order

to the sender. This situation is possible according to
the network condition. Figure 7 shows the test for
the sender's behavior when SACK segments are
delayed and lost in network. In this figure, the
SACK segments for DATA with seq 3501 and 3901
are lost shown in line 2 and 6, and 4101 is delayed
shown in line 4 and 9.

All implementations treated well for these
situations. The lost packets were retransmitted in
one RTT in sequential order. We can estimate that
current SACK implementations do not consider the
order of arrival from this result.

4.3. Duplicate and Identical SACK
The third test we performed was sender's behavior to
multiple duplicate ACK segments with duplicate and
identical SACK. The duplicate ACK segment with
the same SACK blocks, which we call identical
SACK, should not be occurred as far as it is not
duplicated in network in the current specifications.
However, we think the sender should deal well the
receipt of identical SACK. Figure 8 shows the test
scenario for duplicate SACK.

<header>
src-addr=192.168.0.1
dst-addr=192.168.0.2
src-port=20
syn-opt=mss(100),sack
<content>
recv seq=3401 var-upd=OFF; ignore;
recv seq=3601 var-upd=OFF; ignore;
recv seq=3801 var-upd=OFF; ignore;
recv seq=4001 var-upd=OFF; ignore;
recv seq=4201 var-upd=OFF; ignore;
recv seq=4401 var-upd=OFF; ignore;

Figure 6. Test Scenario for Multiple Drops in a Window

<header>
src-addr=192.168.0.1
dst-addr=192.168.0.2
src-port=20
syn-opt=mss(100),sack
<content>
recv seq=3401 var-upd=no; ignore;
send ack=any var-upd=no; ignore;
recv seq=3601 var-upd=no; ignore;
send ack=any var-upd=no; ignore;
recv seq=3801 var-upd=no; ignore;
send ack=any var-upd=no; ignore;
recv seq=4001 var-upd=no; ignore;
send ack=any var-upd=no; send tcp seq=1 ack=3401 flag=(ack) sack=(4101-4201,3901-4001,3701-
3801,3501-3601) win=16400 var-upd=no;
; send tcp seq=1 ack=3401 flag=(ack) sack=(3701-3801,3501-3601) win=16400 var-upd=no;
send ack=any var-upd=no; send tcp seq=1 ack=3401 flag=(ack) sack=(4101-4301) win=16400 var-upd=no;
send ack=any var-upd=no; send tcp seq=1 ack=3401 flag=(ack) sack=(4101-4401) win=16400 var-upd=no;
 :
send ack=any var-upd=no; send tcp seq=1 ack=3401 flag=(ack) sack=(4101-5001) win=16400 var-upd=no;
<end>
any is used when the condition is true on all value

Figure 7. Test Scenario for Delay and Loss of SACK

研究会Temp
－45－

The implementations other than Linux seem to inflate
window when it receives duplicate or identical SACK.
The behavior is not agreeable from the theory in the
pipe algorithm. NetBSD decrements pipe value
every time when it receives duplicate ACK without
referring the values in SACK block by referring its
source code. Solaris 2.6, Solaris 8 and Windows 98
seem to implement in the same way since the result in
the communication log was the same. On the other
hand, Linux did not inflate window to duplicate
SACK. It maintains the bytes of unacknowledged
segments instead of pipe value by referring the source
code. The result for identical SACK was also the
same as above.

5. CONCLUSION

In this paper, we described the design,

implementation and experimental result of a TCP test
system. The system is designed to reduce the burden
of test operator by specifying only exceptional
behaviors which the operator wishes to test in the test
scenario among a complete communication. The
system supports a variety of description of the test
scenario. It provides three types of trigger events as
the condition to cause the exceptional behavior, which
are received packet, sending packet and timer
expiration. The condition is described using
parameters in the packet. As the action for an event,
a packet with any parameter values can be produced.
It is also possible not to send any packet for an action.
The function above is useful for testing congestion
control, which is one of the most important functions
in TCP.

The scenario interpreter selects the action to each
event by the condition described in the test scenario.
If the condition is satisfied, the action described in the
test scenario is executed. If not, the action is
determined by the behavior of original TCP module.
The scenario interpreter and the log collector of the
test system are implemented into the TCP module by
modifying the module itself. It is implemented on
NetBSD with SACK code developed by PSC. The
test scenario is uploaded to the TCP module before it

is executed. This implementation facilitates the
combination of normal TCP behavior and
scenario-oriented TCP behavior in a communication.

For the experimental usage of the system, we
described the evaluation of SACK implementations on
several operating systems. We selected test cases
which can happen in actual environment. We found
several facts and problems in SACK implementations
in some operating systems. It is considered that the
test system is effective on testing of TCP through this
experiment.

REFERENCES
[1] W. Stevens, “TCP/IP Illustrated, Vol. 1: The Protocols,”
Addison Wesley, 1994.
[2] V. Paxson, M. Allman, S.Dawson, W.Fenner, J. Griner, I.
Heavens, K. Lahey, J. Semke and B. Volz, “Known TCP
Implementation Problems,” RFC 2525, Mar. 1999.
[3] S. Floyd and T. Henderson, “The NewReno
Modification to TCP's Fast Recovery Algorithm,” RFC2582,
Apr. 1999.
[4] M. Mathis, J.Mahdavi, S.Floyd, and A. Romanow, “TCP
Selective Acknowledgment Option,” RFC 2018, Oct. 1996.
[5] S. Savage, N. Cardwell, D. Wetherall and T. Anderson,
“TCP Congestion Control with a Misbehaving Receiver, ”
ACM Computer Communication Review, Oct. 1999.
[6] S. Parker and C. Schmechel, “Some Testing Tools for
TCP Implementors,” RFC 2398, Aug. 1998.
[7] V. Paxon, “Automated Packet Trace Analysis of TCP
Implementations,” in Proc. of SIGCOMM ’97, Aug. 1997.
[8] T. Kato, T. Ogishi, A. Idoue and K. Suzuki, “Design of
Protocol Monitor Emulating Behaviors of TCP/IP
Protocols,” in Proc. of IWTCS ’97, Sep. 1997.
[9] J. Padhye and S. Floyed, “On Inferring TCP Behavior,”
in Proc. of SIGCOMM ’2001, Aug. 2001.
[10] Fyodor, “Remote OS Detection via TCP/IP Stack
Fingerprinting,”http://www.insecure.org/nmap/nmap-finger
printing-article.html, Dec. 1998.
[11] R. Gecse and P. Krémer, “Automated Test of TCP
Congestion Control Algorithm,” in Proc. of IWTCS ’99, Sep.
1999.
[12] “OSI - Open System Interconnection, Conformance
testing methodology and framework,” ISO/IEC 9646, 1997
[13] “tcpdump/libpcap Homepage,”
http://www.tcpdump.org.
[14] “Pittsburgh Supercomputing Center (PSC) Homepage,”
http://www.psc.edu/networking/tcp.html
[15] K. Fall and S. Floyd, “Simulation-based Comparisons
of Tahoe, Reno, and SACK TCP,” ACM Computer
Communication Review, Jul. 1996.
[16] S. Floyd, J. Mahdavi, M. Mathis and M. Podolsky, “An
Extension to the Selective Acknowledgement (SACK)
Option for TCP,” RFC 2883, Jul. 2000.
[17] M. Allman, V. Paxson and W. Stevens, “TCP
Congestion Control,” RFC 2581, Apr. 1999.

<header>
src-addr=192.168.0.1
dst-addr=192.168.0.2
src-port=20
syn-opt=mss(100),sack
<content>
recv seq=3401 var-upd=no; ignore;
send ack=any var-upd=no; send tcp seq=1 ack=3401 flag=(ack) sack=(3501-3601) win=16400 var-upd=no;
send ack=any var-upd=no; send tcp seq=1 ack=3401 flag=(ack) sack=(3501-3701) win=16400 var-upd=no;
 :
send ack=any var-upd=no; send tcp seq=1 ack=3401 flag=(ack) sack=(3501-4501) win=16400 var-upd=no;
; send tcp seq=1 ack=3401 flag=(ack) sack=(1001-1101,3501-4501) win=16400 var-upd=no;
; send tcp seq=1 ack=3401 flag=(ack) sack=(1101-1201,3501-4501) win=16400 var-upd=no;
 :
; send tcp seq=1 ack=3401 flag=(ack) sack=(2001-2101,3501-4501) win=16400 var-upd=no;
send ack=any var-upd=no; send tcp seq=1 ack=3401 flag=(ack) sack=(3501-4601,2001,2101) win=16400 var-upd=no;
send ack=any var-upd=no; send tcp seq=1 ack=3401 flag=(ack) sack=(3501-4701,2001,2101) win=16400 var-upd=no;
 :
send ack=any var-upd=no; send tcp seq=1 ack=3401 flag=(ack) sack=(3501,5901,2001,2101) win=16400 var-upd=no;
<end>

Figure 8. Test Scenario for Duplicate SACK

研究会Temp
－46－

