goboogobboooboog 10503
ooobooooooo ogd

Group Protocol for Quorum-Based Replication

Keijirou Arai, Katsuya Tanaka, and Makoto Takizawa

Tokyo Denki University
E-mail {arai, katsu, taki}@takilab.k.dendai.ac.jp

Distributed applications are realized by cooperation of multiple processes which manipulate data
objects like databases. Objects in the systems are replicated to make the systems fault-tolerant. We
discuss a system where read and write request messages are issued to replicas in a quorum-based scheme.
In this paper, a quorum-based (QB) ordered (QBO) relation among request messages is defined to make
the replicas consistent. We discuss a group protocol which supports a group of replicas with the QBO
delivery of request messages.

O—SLARICEDODW =S)L—T 7O rall
B BERES HH Bt IR B
WRUEBK B T E Ry A7 & 15
DRENSNE, TR AA T Vs NEBET A EEO T 0t RO WHEIEIC L o TERBL ST
TWb, VAT ANDOEAT V2 MIVAT LOEEE S ATAMEZ A LT 27D ELIND, A%
Tlit, 2—F KUK SE, read & write RN AT V=27 bOL TV IDOEBRITHKITENDE VAT A

BEEZ D, KigXTlE, V7) ARO—BMEEZRIET 2 HR A »E— URIOIAF (22— AEF:QBO) &
IONEFIZA v =V ERET 5 HANOREET5H, HERBERA v —COLERETLHIZLIZED R

FLAEERDAN—T >y EFELEIEELZT 0 b aLoEE EFHEICOWTIHRE TV S,

1 Introduction

Distributed systems are realized in a 3-tier

client server model. Users in clients initiate
transactions in application servers. Transactions

manipulate objects by issuing requests to data
servers. Data and application servers are dis-
tributed in computers. Computers which have
servers exchange request and response messages
on behalf of the servers. Some computer may have
both application and data servers. Thus, a collec-
tion of computers are exchanging request and re-
sponse messages. Objects in data savers are repli-
cated in order to increase performance and relia-
bility. In this paper, we consider a system which
includes replicas of simple objects like files, which
supports basic read and write operations.

A transaction sends a read request to one
replica and sends write to all the replicas in or-
der to make the replicas mutually consistent in
a two-phase locking protocol [3]. The two-phase
locking based on read-one-write-all principle is ef-
ficient only for read dominating applications. An-
other way is the quorum-based scheme [3], where
each of read and write requests is sent to a subset
of replicas named quorum. The more frequently
a request is issued, the smaller a quorum is.

In the group communications [4, 9, 10], a mes-
sage mq causally precedes another message mo if
the sending event of my happens before may [8].
If my causally precedes ms, m; is required to
be delivered before ms in every common destina-
tion of m; and mso. In addition, write requests
issued by different transactions are required to
be delivered to replicas in a same order. Thus,
the totally ordered delivery of write messages is
also required to be supported in a group of repli-
cas. Raynal et al. [1] discuss a group protocol
for replicas where write requests delayed can be

omitted based on the write-write semantics. The
authors [5] present a transaction-based causally

0 130

ordered protocol where only messages exchanged
among conflicting transactions are ordered where
objects are not replicated.

Some message m transmitted in the network
may be unexpectedly delayed and lost in the net-
work. Even if messages causally/totally preceded
by such a message m are received, the messages
cannot be delivered until m is received. Suppose
a write request wy and then a read request r are
issued to a replica. If there exists some write re-
quest ws between wy and r, which is not destined
to the replica, it is meaningless to perform r and
w1 since an obsolete data written by w; is read by
r. Thus, it is critical to discuss what messages to
be delivered to replicas in what order. Requests to
be delivered are referred to as signi ficant. If only
significant requests are delivered in each replica,
less number of requests are required to be deliv-
ered and requests stay in a queue for shorter time.
We discuss a group protocol named QG (quorum-
based) one where only significant message are de-
livered. We evaluate the QG protocol in local area,

network and wide area network like the Internet
with respect to how many request messages can

be omitted and how long each message waits in a
queue.

In section 2, we present a system model. In
section 3, we define a quorum-based precedent re-
lation of messages and we discuss what messages
to be ordered. In section 4, we present the QG
protocol. In section 5, we discuss the evaluation
of the QG protocol.

2 System Model

Computers pq, ..., p, are interconnected in an
asynchronous network where messages may be lost
and the delay time is not bounded in the network.
Applications are realized in a 3-tier client server
model. Replicas of data objects are stored in data
servers and transactions in application servers is-

研究会Temp
マルチメディア通信と分散処理

研究会Temp
105－3

研究会Temp
（２００１． １１． １５）

研究会Temp
－13－

sue read and write requests to data servers to
manipulate objects [Figure 1]. Let o; denote a
replica of an object o in a computer p;. Let R(0)
be a cluster, i.e. a set of replicas of the object o.

-

-

server

el =
SIS

Figure 1: System model.

A pair of operations op; and ops on an object
are referred to as conflict iff op; or ops is write.
Otherwise, opy and ops are compatible. On receipt
of a request op from a transaction T;, op is per-
formed on the replica o; in the data server of p; if
any operation conflicting with op is being neither
performed nor waited. Otherwise, op is waited in
the queue. This is realized by the locking proto-
col. Let opt denote an instance of an operation
op issued by T; to manipulate a replica o; in py,
where op is either r(read) or w(write). After ma-
nipulating replica, T; issues either a commit(c) or
abort(a) request message to the replicas. On re-
ceipt of ¢ or a request, every lock held by T; is
released.

A computer supports data and application
servers. A computer may send requests issued by
a transaction while receiving requests to the server
from other computers. Thus, each computer ex-
changes read and write requests with other com-
puters. In this paper, we discuss in what order
request messages received are delivered to repli-
cas in each computer.

A transaction T; sends read to N, replicas in
a read quorum (), and write to N, replicas in a
write quorum @, of an object 0. N,. and N,, are
quorum numbers. Q. U Q,, = R(0), N, + N,, >
q, and N, + N, > q. Each replica o; has a version
number v;. T; obtains a maximum version number
vp in Q. v¢ is incremented by one. Then, the
version number of every replica in @Q,, is replaced
with the maximum value v;. T; reads the replica
whose version number is maximum in Q.

3 Precedent Relation of Requests

3.1 Quorum-based precedency

A request message m from a transaction T; is
enqueued into a receipt queue R(Q); in a computer
p;. Here, let m.op show an operation type op, i.e.
r or w. Let m.o be an object o to be manipulated
by op, m.dst be a set of destination computers,
and m.src show the source computer. A top re-
quest m in R(Q); is dequeued and then an operation

application

data server

m.op is performed on a replica o; of an object o
(= m.o) in p;.

Each computer p, maintains a vector clock V'
= (v1, ..., Uy) [9]. For every pair of vector clocks

= (a1, .., apyand B = (b1, ..., b,), A > B if
a; > by fort =1, ..., n. If neither A > Bnor A <
B, A and B are uncomparable (A || B). A vector
V is initially (O, ..., 0) in every computer. Each
time a transaction is initiated in a computer p,,
Uy = Uy + 1 in p,. When T; is initiated, V(T;)
:= V. A message m sent by T; carries the vector
m.V = (v, ..., vn) (= V(T;)). On receipt of m
from p,, V is manipulated in a computer p; as v,
:= max (vs, m.vg) for s =1, ..., n (s #t).

A transaction 7; initiated in p, is given a
unique identifier tid(T;). tid(T;) is a pair of the
vector clock V(T;) and a computer number no(T;)
of p,. For a pair of transactions T; and T}, id(T;)
< id(Ty) if V(T,) < V(Tj). 1t V(T,) | V(T)),
tid(T;) < tid(Ty) if no(T;) < no(Tj). Hence, for
every pair of transactions 7; and T}, either tid(T5)
< tld(TJ) or tid(Ti) > tld(T])

Each request message m has a sequence number
m.sq. sq is incremented by one in a computer p;
each time p; sends a message. For each message
m sent by a transaction T', m.tid shows tid(T).
[Quorum-based ordering (QBO) rule] A re-
quest my quorum-based precedes (QQ — precedes)
ma (m1 < my) if my.op conflicts with ms.op and

1. tid(m1) < tid(ms), or
2. my.sq < ma.sq and tid(my) = tid(mz). O

my || ma if neither (m; < ma) nor (my > ma).
A pair of messages m; and mo received by a com-
puter p; are ordered (m; —; ma) in RQy:

e If my < ma, my precedes ma (mq —¢ m2) .

e Otherwise, m; — mo if my || m2 and my is

received before ms.

“my1 —¢ ma” shows “my locally precedes mo
in p”. my globally precedes ma (M1 — my) iff my
—¢ Mo OF M1 —¢ M3 — My in some computer p.
3.2 Significant messages

Due to unexpected delay and congestions in the
network, some destination computer may not re-

ceive a message m. Messages causally /totally pre-
ceding m cannot be delivered without receiving m.

Wi W;E wj r é
P ® * ® o—
u u u u
D Wy r, W. Mg
u . \J
Vv Vv Y, \
r W, r r 6
P, 2 o —0> o—
time

Figure 2: Receipt sequences.

Figure 2 shows receipt queues of three computers
Pty Pu, and p,, each of which has a replica of an
object 0. N, = N,, = 2. For example, p; receives
write requests wé, w}, and wf, and then a read
request rf, ie. wi —; wh —; wh —y v W — Y
since w{ —,, ry. Neither r§ —, 7§ nor rg —, ¢
since rf and rg are compatible.

0140

研究会Temp
－14－

If a read request r is performed on a replica
o¢, data of o; written by some write request w is
derived by r. Here, it is significant to discuss by
what write request data read by a read request is
written. A read rj- reads data written by a write
wf in py (wf = %) iff wf —; 7t and there is no

write w' such that wf —; w' — k.

A write request wf is current for a read request
7% in a receipt queue RQ; iff w} = r’ and there
is no write w such that wf — w — r?. Here, r}
is also current. A request which is not current is
obsolete. In addition, if a write wy is performed on
a replica o; after wy is performed, o; is overwritten
by ws and the data written by w; disappear.

e A write request w§- absorbs another write re-
quest wj if w{ —¢ w} and there is no read r

such that w§ — T —y Wi

e A current read request 7!

absorbs another
tir ot ¢
read request rj iff rj —¢ 7

j and there is no

write w such that r{ — w — r%.
[Definition] A request m is significant in RQ,
iff m is neither obsolete nor absorbed. O

In Figure 2, r§ is current but is absorbed by
rg. rg and rg are merged into one read request rgg
which returns the response to the transactions Tk
and Tg. Thus, wi, wi, and r§ are insignificant in
pe. T is insignificant in p, and rj is also insignifi-
cant in p,. Figure 3 shows a sequence of significant
requests for each computer obtained in Figure 2 by
removing insignificant requests. This sequence
is referred to as signi ficant sequence.

W,
2
L oy
u—® O
Vv \%
W, r
pV '4 v56

time

Figure 3: Significant sequences of Figure 2.

4 Group Protocol
4.1 Transmission and receipt

We present a QG (quorum-based group) proto-
col for a group of replicas o1, ..., o, of an object
o in computers p1, ..., pp (n > 1), respectively.
A quorum @, is constructed by randomly select-
ing N, replicas in the cluster R(0) each time a
request op is issued. A request message m sent
by a transaction T; in p; includes the following
attributes:

m.SSQ = subsequence numbers (ssqq, ..
m.ACK = receipt confirmation (acki, ..., acky,).
m.V = vector clock, i.e. V(T;) = (v1, .. .,up).
m.C = write counters (cl, Ce cn).

Variables SSQ = (ssqi, ..., $s¢,), RSQ =
(rsqi, ..., rsqn), and RQ = (rqq, ..., rqy) are ma-
nipulated in p;. Each time p; sends a message m

0 150

. SSQn).

to pu, not only sq but also a subsequence number
ssq, are incremented by one. The message m car-
ries sq and ssq, (v =1, ..., n).

The variables rq, and rsqs show a sequence
number (sq) and a subsequence number (ssgs) of
a message which p; expects to receive from p, (s
=1, ..., n), respectively. Suppose p; receives a
message m from ps. If m.ssqq = m.rsqs, p; has
received every message which ps had sent to p;
before m, i.e. no message gap. Then, rsq, := rsq,
+ 1. rqs := max(rqs, m.sq). If m.ssq > rsqs, pt
finds p; has not received some gap message m’
from p, where m.rsqs < m’.ssq; < m.ssq:. The
selective retransmission is adopted.

When pg sends a message m to p;, m.ack, =
rqy (v =1, ..., n). p; knows p, has accepted ev-
ery message m’ from p, where m’.sq < m.ack,.
On receipt of m, ACK, := m.acks, for u=1, ...,
n. A message m from p; is locally ready in a re-
ceipt queue RQ; iff m.ssq; = 1 or every message
my from pg in RQ¢ such that m1.s5q: < m.ssq; is
locally ready. A message m received from a com-
puter pg is locally ready in p; if m.ssq = rsqs. If
m is locally ready in RQ, p; receives every mes-
sage which ps has sent to p; before sending m. m;y
directly precedes my for ps in RQy (M1 —¢s m2)
iff mq.ssq; = mo.ssq; — 1.

[Definition] Let m be a message which a com-
puter p; receives from pg.

e m is partially ready in RQ; iff

1. m is locally ready or
2. m.op = read and there is a partially
ready message my in RQ; such that
e my —s m, and
e mo.op = r for every message mso
where m1.ssq; < Ma.55q; < M.SSG;-

e m is ready in RQ iff

1. m is locally ready and there is some lo-
cally ready message mj(< m) from ev-
ery py (# pi) in RQy, or

2. m is partially ready, and for every p,
(# ps), if there is no locally ready mes-
sage m1(> m) from p,, in RQy, there is a
paréially ready message mo(> m) from
Pu.

Suppose p; receives mi from ps; and has re-

ceived no message from pg after receiving my.
Suppose p; receives ms from another computer
Pu. If my.sq < mo.ackg, p; knows ps has sent some
message ms such that mi.sq < ms.sq < mo.acks.
However, p; cannot know whether or not mg is
destined to p;.
[Definition] A message m from p; is uncertain in
RQ; iff p; does not receive m, p; knows that some
pu (#ps) has received m, i.e. p; receives such a
message my that m.sq < my.acks from p,, and p;
does not know of p; € m.dst. O

4.2 Delivery of requests

Suppose a computer p; receives a message m.
Let m, denote a message sent by p, where m, <
m and there is no message m,, from every com-
puter p, such that m, < m] < m. Let max(mi,

.., My) be a maximum message m, such that
mg < my, for every mg (s =1, ..., n). Here, m,
directly QQ-precedes m in py.

研究会Temp
－15－

If m is ready in RQ¢, p; has surely received a
partially ready message m/, from every computer
py such that m, < m < m). The messages m1,
..., my are also partially ready. p; can deliver m
after my, ..., my,. Let m] be a partially ready
message which p, sends to p; such that m, < m
< m,, and there is no message m., from p, such
that m < m,, < m/,. If m], is locally ready, every
message m,, which p,, sends to p; after sending m,,
before m], is not destined to p;. If m], is partially
ready but not locally ready, m,, is uncertain. Sup-
pose there are undestined or uncertain messages
Uy, ..., U such that m, < u; < ... < ur < m
as shown in Figure 4. p; receives a message m,
(= max(m1, ..., my)) and then receives m but
does not receive ui, ..., ug. If m is locally ready,
U1, - - ., ug are undestined. If m is partially ready,
some message u; is uncertain. Table 1 summaries
how m and m,, are insignificant.

time

I'Tg I'T]V Ul Uk m n'{/
I"'\\ I"'\\
OO0
RN
. destined message (/) : undestined message

Figure 4: Receipt sequence of messages.

Table 1: Insignificant messages.

| My | m | Uty oy Uk | Insignificancy
read | read | every w; is | m is insignificant
read. (absorbed by m.).
m is merged to my.
some u; is | m is insignificant
write. (obsolete).
write | read | every w; is | m and my,

read. are significant.

some u; is | m and m, are

write. insignificant(obsolete).
read | write if depends on request

following m of m,,

is significant.

write | write My 1S
insignificant(obsolete).

In order to detect insignificant requests in RQy,
p¢ manipulates a vector of write counters C = {cy,
.. Cn), where each element ¢, is initially zero.
Suppose p; sends a message m. If m is a write
request, ¢, = ¢, + 1 for every destination p, of
m. m.C := C. Each message m carries write
counters m.C' = (m.cy, ..., m.c,). On receipt
of a write request m from a computer ps, ¢, :=
max(cy, m.cy)(u =1, ..., n).
[Theorem]Let m; and mz be messages received
in a RQ: where my precedes msy. There exists
such a write request ma that my; < msg < mo if
m1.C < me.C and m1.V < mo.V. O
[Example 1] In Figure 5, each of four computers
Pp1, D2, P3, and py has a replica of an object and
a write counter C'is (0,0,0,0). N, = 2 and N,, =
3. p1 sends a write request wy to pa, p3, and py.

w1.C = (0,1,1,1). On receipt of wy, C = (0,1,1,1)
in pa, p3, and ps. Then, ps sends ws to p1, p2, and
ps. Here, wy.C = (0,1,1,1) + (1,1,1,0) = (1,2,2,1).
Then, p3 sends rz to p2 and py where r3.C =
(1,2,2,1). r3.V > w1.V and r3.C (= (1,2,2,1))
> w1.C (= (0,1,1,1)). From the theorem, p4 finds
that some undestined write exists between w; and
r3. Here, wy and r3 are insignificant in py. O

<0,0,0,0>

W1<0,1,1,1>
\
\\ <0,1,1,1>
<0,1,1,1>

<0,1,1,1>

/ ¥ <1221>

<1,221>

/ r3<l'2'2'l>
<2232> / W4

M5<12214

<0,0,0,0>

<1,2,2,1> <1,2,2,1>

<1,1,2,2>
<2,2,3,2>

\

time

Figure 5: Obsolete messages.

A message m can be decided to be partially
ready according to the following rule:

e A message m from a computer p; is partially
ready in RQ); if

1. m.ssq; = rsqs, i.e. m is locally ready, or

2. m.op = r and my.c; = ma.c; for a pair of

requests mi1 and my such that m; —ys
m —¢s M.

5 Evaluation

The QG protocol is evaluated by measuring
the number of requests performed in each com-
puter and waiting time of each message in a re-
ceipt queue through the simulation. We make the
following assumptions on the simulation:

[Assumptions |

1. Each computer p; has one replica o, of an
object o (t =1, ..., n).

2. Transactions are initiated in each computer
p¢. Each transaction issues one request, read
or write request. A computer p; sends one re-
quest issued every 7 time units. 7 is a random
variable.

3. It takes 7 time units to perform one request
in each computer.

4. N, and N,, are quorum numbers for read and
write, respectively. N, + N, > n + 1 and n
+ 1< 2N, <n+ 2.

5. Each computer p; randomly decides which
replica to be included in a quorum for each
request op given the quorum number N,.

6. It takes ¢ time units to transmit a message
from one computer to another. ¢ is summa-
tion of minimal delay time mind and random
variable €.

0 160

研究会Temp
－16－

7. It is randomly decided which type read or
write each request is. P, and P, are prob-
abilities that a request is read and write, re-
spectively, where P, + P, = 1. O

In the QG protocol, only the significant re-
quest messages are performed on each replica. If
there is at most one request in a receipt queue,
all requests which arrive at the computer are per-
formed. Thus, the more number of messages are
included in the receipt queue, the more number
of messages are not performed since more number
of messages can be considered to be insignificant.
First, we consider a group of five replicas (n =
5) where N, = N,, = 3. We measure the ratio
of significant messages (SR) to the total number
of messages issued and the average waiting time
(W) of each message in a receipt queue. Here, we
assure P, = 0.8 and P, = 0.2.

[
BSn

0.
=2
1

L}
)

Ratio of the significant messages(SR)

0 0.2 0.4 0.6 0.8 1

inter message time(t)

Figure 6: Ratio of significant requests (SR).

Figures 6 and 7 show the ratio of significant
messages (SR) and the average waiting time (W)
for inter-transaction time 7 for n = 5. Here, §
shows the delay time. § = 0.5[msec] means a local

area network. 6 = 20 shows a_ nation-wide net-
work, i.e. Japan, and § = 120 indicates world-wide

network. For example, it take about 0.5[msec] to
deliver a message from one computer to another
in a local area network. It takes about 120[msec]
to transmit a message from Japan to the US. In a
wide area network, more number of messages are
in a transmission. Hence, the larger 7 is, the more
number of messages arrive at each replica.

In Figure 6 the ratio of significant messages
(SR) in the receipt queue is 0.6 for 7 = 0.2[msec],
This means about 50% of the messages arriving
at a computer are considered to be significant in
a local area network (6 = 0.5). If each computer
sends a message every 0.2[msec] (7 = 0.2), SR =
0.5 for § = 0.5 and 7 = 0.8. Only 50% of request
messages transmitted in the network are insignifi-
cant, i.e. can be omitted in the receipt queue for 7
= 0.6 and § = 0.5, i.e. local area network. In the
wide area network (6 = 122), about 70% of request
messages can be omitted in the receipt queue for
7 = 0.6. Thus, the more number of messages are
included in the receipt queue, the more number of
messages are not performed.

Figure, 7 shows the average waiting time (W)
of the QG protocol for 7. n/7 shows number of
messages per msec which a process receives. Here,

uivgd

ik

Average waiting time Wmsec]

0 0.2 0.4 0.6 0.8 1
inter-message time (t)

Figure 7: Average waiting time (W).

n = 5, the shorter 7 is, the more number of mes-
sages a process receives.

e

[
-]
BSn

2
2

o o

Average waiting time W[msec]
o
-

0 0.2 0.4 0.6 0.8 1

inter-message time(t)

Figure 8: Ratio of average waiting time.

Figure, 8 shows a ratio of the average waiting
time of the QG protocol to the traditional group
protocol. Figure 9 shows how many requests are
performed on each computer by the QG protocol
where n =5, N, = Ny, =3, P, =08, 7 = 10
for # = 0, 0.5, 1[msec]. The vertical axis shows
what percentage of requests received are signifi-
cant. Here, about 50% of the messages transmit-
ted are significant. That is, half of the messages
received are removed from the receipt queue. For
m = 1, about 30% of the messages are significant.
m = 0 shows a processing speed of each request is
so fast that it can be neglected. Here, no message
stays in a receipt queue. FEvery request is per-
formed. In the QG protocol, only the significant
messages are delivered. This shows that fewer
number of requests are performed, i.e. less com-
putation and communication overheads in the QG
protocol than the message-based protocol.

Figure 10 shows average waiting time W [msec]
of message in the receipt queue for number n of
replicas. Here, P, = 0.8, 7 = 10[msec], and 7 =
0.5[msec]. Here, Ny = Ny, =[] (n +1) /2 17.
Three cases for 6 = 0.5, § = 20, and § = 120 of
average delay time are shown. Figure 10 shows
the average waiting time of each message is O(n)
for the number n of computers. If messages are
kept in the queue according to the traditional pro-
tocols, the average waiting time is O(n?). Thus,

研究会Temp
－17－

A

ik

o
ES

)

.4

Ratio of significant requests

0.1 1 10 100 1000
Delay time (log §)

N, =3 Ny =3

Figure 9: Ratio of significant requests.

*x

erage waiting time W[msec]

Number of replicas(n)

Figure 10: Average waiting time of message.

the average waiting time can be reduced by the
QG protocol. Figure 11 shows a ratio of signifi-
cant messages for P,. Here, 7 = 0.5[msec]|, n = 5,
and N, = N, = 3. In cases P, =0 and P. = 1,
every request in a receipt queue is read and write,
respectively. In case P. = 0, a last write request
absorbs every write in the queue. In case P, =
1, a top read request absorbs every request in the
queue. Here, the smallest number of requests are
performed. In case “P, = 0.5”, the number of
insignificant requests removed is the minimum.

6 Concluding Remarks

This paper discussed a group protocol for a
group of computers which have replicas. The
replicas are manipulated by read and write re-
quests issued by transactions in the quorum-based
scheme. We defined the quorum-based ordered
delivery of messages. We defined significant mes-
sages to be ordered for a replica. We presented the
QG (quorum-based group) protocol where each
replica decides whether or not requests received
are significant and which supports the quorum-
based ordered delivery of messages. The QG pro-
tocol delivers request messages without waiting
for insignificant messages. We showed how many
messages to be performed and how long average
waiting time of message in a receipt queue can be
reduced in the QG protocol compared with the
traditional group protocol.

0 0.1 0.2 03 0.4 0.5 0.6 0.7 08 0.9 1
Pr

Ratio of the significant requests for the total (destined) requests

Figure 11: Ratio of read requests(F,).

References
[1] Ahamad, M., Raynal, M., and Thia-Kime,
G., “An Adaptive Protocol for Implement-

ing Causally Consistent Distributed Services,”
Proc. of IEEE ICDCS-18, 1998, pp.86-93.

[2] Arai, K., Tanaka, K., and Takizawa, M.
“Group Protocol for Quorum-Based Repli-
cation” Proc. of IEEE ICPADS’00, 2000,
pp.57-64.

[3] Bernstein, P. A., Hadzilacos, V., and Good-

man, N., “Concurrency Control and Recovery
in Database Systems,” Addison- Wesley, 1987.

[4] Birman, K., Schiper, A., and Stephenson, P.,
“Lightweight Causal and Atomic Group Multi-
cast,” ACM Trans. Computer Systems, Vol.9,
No.3, 1991, pp.272-314.

[5] Enokido, T., Tachikawa, T., and Takizawa,
M., “Transaction-Based Causally Ordered
Protocol for Distributed Replicated Objects,”
Proc. of IEEE ICPADS 97,1997, pp.210-215.

[6] Enokido, T., Higaki, H., and Takizawa, M.,
“Group Protocol for Distributed Replicated
Objects,” Proc. of ICPP’98, 1998, pp.570—
577.

[7] Garcia-Molina, H. and Barbara, D. “How to
Assign Votes in a Distributed System,” Jour-
nal of ACM, Vol.32, No.4, 1985, pp. 841-860.

[8] Lamport, L., “Time, Clocks, and the Ordering

of Events in a Distributed System,” Comm.
ACM , Vol.21, No.7, 1978, pp.558-565.

[9] Mattern, F., “Virtual Time and Global States
of Distributed Systems,” Parallel and Dis-
tributed Algorithms, 1989, pp.215-226.

[10] Nakamura, A. and Takizawa, M., “Causally
Ordering Broadcast Protocol,” Proc. of IEEE
ICDCS-14, 1994, pp.48-55.

[11] Tachikawa, T. and Takizawa, M., “Signifi-
cantly Ordered Delivery of Messages in Group
Communication,” Computer Communications
Journal, Vol. 20, No.9, 1997, pp. 724-731.

[12] Tanaka, K., Higaki, H., and Takizawa,
M. “Object-Based Checkpoints in Distributed
Systems,” Journal of Computer Systems Sci-
ence and Engineering, Vol. 13, No.3, 1998,
pp-125-131.

0 180

研究会Temp
－18－

