goobobobooooog
gboboboboooood
gboooooooooon

10601 13
1601 13

Mobile Agent Model for Manipulating Distributed Objects
Systems

Takao Komiya, Hiroyuki Ohsida, Katsuya Tanaka, and Makoto Takizawa
Tokyo Denki University, Japan
{komi, ohsida, katsu, taki}@takilab.k.dendai.ac.jp

This paper discusses mobile agents which manipulate objects in multiple object servers under various con-
straints among servers like atomicity and consistency. In database applications, application programs are
performed on clients and issue requests to object servers. Then, the object servers send responses to the
clients. On the other hand, programs named agents move to object servers where the agents manipulate
objects in a mobile agent approach. If agents complete manipulating objects in the servers, the agents move
to other servers. If an agent conflicts with other agents on an object server, the agents negotiate with each
other to resolve the confliction. In this paper, we discuss how to perform application programs with different
constraints on multiple object servers in the agent-based model.

PRA TV FORTLERETS-HDENMILI—V M ETIL

INE e KR B IR B R A
SRR T S 2 7 A T

AR TENAAMNT—T 2y MZOWTHLETWE, EAAMNAT—T)y MIETFME, —BMED X 5 odh—n
MOk REINT T, BEOA TV 27 N —NEDFT V=7 VeBlET D, T—FRX—RAT 7V r—3
VO TV r—varFal At A7V M NICERERITL, 7947 N ETEITEND,
ZDLE, ZOFT VI M—NEEDI FA TV MUK ERET D, —H, ==Y = AT
ra s8I, ATV N REBEIT D, £, BEIEOF TV N ANETZ—V 2 MIE
NANT—=T =2 NT T —=FTET V=7 NaeBET 2, bL—V = MRZEOY—ANETHT = b
OEEERK 2T HIE, 2O —V Y MIOY—N"~BET5, bL, HbAT—T =y " b EAT V=
7 M —ARECHMOT—V 2 MEBATHIRLIE, 20—V)y MNIBES LRI THDIMOT—T =
Y hERBTDH, ZOMXT, BAFT—V =V MR—ARETNTEBDA TV =7 b —NEDRR ST
BT T, LOXET 7V r—varrul s heETT50N2 0T L b,

1 Introduction izable. In the traditional systems, objects are locked
to realize the serializability [4] of transactions. In
the locking protocol, multiple accesses to an object
are coordinated based on a principle that only one
transaction is a winner which can hold the object
and the others are losers. There is another way
like timestamp ordering [4]. Here, transactions are
totally ordered in their timestamps. Transactions
manipulate objects according to the timestamp or-
der, i.e. the elder, the earlier. The locking proto-
col implies deadlock but no deadlock occurs in the
timestamp ordering protocol.

In client-server database applications, applica-
tion programs are performed on clients, which is-
sue SQL [2] requests to object servers. The object
servers send responses to the clients on completion
of the requests. Requests and responses are ex-
changed among clients and servers in networks. The
more number of requests are issued to object servers
by applications and the more number of responses
are sent back to the applications, the more commu-
nication overheads are increased. In the three-tier
client-server architecture [4], applications move to

application servers from clients in order to decrease
the communication overheads between clients and
servers.

In database applications, transactions are re-
quired to manipulate objects in object servers so
as to satisfy ACID (atomicity, consistency, isola-
tion, and durability) properties. [4]. For example,
objects in multiple object servers are required to be
atomically manipulated and transactions are serial-

0730

In another computation paradigm, programs
named mobile agents [1] move around data servers.
First, an agent lands at a server and then is per-
formed to manipulate data objects in the server. If
the agent finishes manipulating the data objects in
the server, the agent moves to another server which
has data to be manipulated. Here, agents manip-
ulate objects in object servers without exchanging
messages in a network. Compared with traditional

研究会Temp
マルチメディア通信と分散処理
コンピュータセキュリティ

研究会Temp
106－13

研究会Temp
16－13

研究会Temp
（２００２． ２． １４）

研究会Temp
－73－

process-based applications like client-server applica-
tions, mobile agents have following characteristics;
1. Agents are autonomously initiated and per-
formed.
2. Agents negotiate with other agents.
3. Agents are moving around computers.

In this paper, we discuss how to manipulate mul-
tiple object servers by using agents. Agents move
around object servers without exchanging messages
in the network. On the other hand, application
programs and object servers are exchanging mes-
sages in the network. In addition, an agent nego-
tiates with other agents if the agents manipulate
objects in a conflicting manner. Through the nego-
tiation, each agent autonomously makes a decision
on whether the agent continues to hold the objects
or gives up to hold the objects.

In section 2, we present object servers. In section
3, we present an agent model for processing transac-
tions. In section 4, we discuss how agents negotiate
with other agents. In section 5, we discuss consen-
sus conditions on which agents make an agreement
in negotiation.

2 Object Servers

A system is composed of object servers Dy, ...,
D,, (m > 1), which are interconnected with reli-
able, high-speed communication networks. FEach
object server supports a collection of objects and
methods for manipulating the objects. Objects are
encapsulations of data and methods. Objects are
manipulated only through methods supported by
the objects.

Applications in clients initiate transactions in ap-
plication servers. A transaction manipulates ob-
jects in one or more than one object server. A
transaction T is an atomic sequence of methods
for manipulating objects in object servers. A subse-
quence T; of methods in T' to manipulate objects in
one object server D; is referred to as subtransaction
of T. A subtransaction T; is also atomic sequence
of methods in one object server D;.

Each object server supports following methods
to manipulate objects in the server;

1. begin-trans: A subtransaction starts. A log
for the subtransaction is initialized. Methods
issued by the subtransaction are kept in record
in the log.

2. op(0): A method op is performed on an object
0.

3. prepare: The log of a subtransaction is saved
in a stable memory.

4. commit: A database is physically updated by
using the log and a subtransaction commits.

5. abort: A subtransaction aborts.

Suppose a pair of subtransactions 77 and T3 ma-
nipulate an object in an object server D; by using
methods op; and ops, respectively. Here, if the re-
sult obtained by performing op; and ops depends

740

on a computation order of op; and ops, op; and
op2 are referred to as con flict with one another on
the object. For example, read and write conflict
on a file object. A pair of methods increment and
decrement do not conflict, i.e. are compatible on a
counter object. On the other hand, reset conflicts
with increment and decrement on the counter ob-
ject. If a method from a transaction T3 is performed
before a method from another transaction T» and
the methods conflict, every method op; from T3 is
required to be performed before every method ops
from T5 conflicting with the method op;. This is
a serializability property of transaction [4]. In or-
der to realize the serializability, the locking protocol
and timestamp ordering protocol [4] are used.

If a transaction manipulates objects in multiple
object servers, the two-phase commitment proto-
col [4] is used to realize the atomic manipulation on
multiple servers. After manipulating objects in the
object servers by using methods, the transaction is-
sues prepare messages to the servers. On receipt of
prepare, update data of objects manipulated by the
transaction is saved in the stable log of each server
and then yes is sent back to the transaction. Unless
succeeded in storing the update data in the log, the
server sends no to the transaction and the subtrans-
action on the server aborts. Then, the transaction
issues commit to the servers only if the transaction
receives yes from all the servers. Otherwise, the
transaction issues abort to every server which has
sent yes. On receipt of abort, the log is removed
and the subtransaction aborts.

Object servers may be replicated in order to
make the system more reliable and available. Sup-
pose servers Dj1, ..., Djm (m > 2) are replicas of an
object server D;. A collection of the replicas {D;1,
..., Djm} is referred to as cluster of Dj;, denoted
as C'(Dy).

3 Agents
3.1 Computation model

An agent is a procedure which can be performed
on one or more than one object server. An agent
issues methods to an object server to manipulate
objects in an object server where the agent exists.
Every object server is assumed to support a plat-
form to perform agents.

First, an agent A is initiated by an application or
is autonomously initiated on an object server. The
procedure and data of an agent A are first stored
in the memory of an object server D; in order to
perform the agent A on D;. If enough resource like
memory to perform the agent A is allocated for the
agent A on the server D;, the agent A can be per-
formed. Here, D; is referred to as current server
of A and the agent A is referred to as land at the
server D;. Objects in the server D; are manipulated
by the agent A through methods. In result, state of
object may be changed and a part of the state may
be derived. Data derived from the server D; may be
stored in the agent A. Thus, an instance A; of the

研究会Temp
－74－

agent A on the object server D; shows a subtrans-
action, i.e. a sequence of methods for manipulating
objects in the server D;. Then, the agent A finds
another server D; which has objects to be manipu-
lated by A. Then, the agent A moves to the server
Dj. Here, the agent A may carry objects obtained
from D; as the data of A [Figure 1]. If enough re-
source like memory in the server D; is allocated for
the agent A, A lands at D;.

A pair of agents A; and A; are referred to as
conflict if A; and A manipulate a same object
through conflicting methods. For example, A; is-
sues a method reset and As issues increment to a
counter object in a server D;. Here, A; and A
conflict. The agent A is allowed to land at D; if the
following condition is satisfied:

[Landing conditions]
1. Enough resource to perform an agent A is al-
located for the agent A in an object server D;.

2. There is no agent on D; which conflicts with
A.

&
Dj D;
/\ :data Q : agent
Figure 1: Agent.

3.2 Movement of agent

Suppose an agent A is at an object server D; and
is finding an object server where the agent A can
land. Suppose there are multiple possible object
servers Dji1, ..., Dj, (m > 1) where the agent A
can land. Let Cand;(A) be a candidate server set,
i.e. a collection of the servers {Dji, ..., Dj,} at
which an agent A can land from a server D;. For
example, there are replicas Dj1, ..., Djn, of some
server D;. Cand;(A) is a cluster C'(D;) of the repli-
cas. If an agent A only reads objects, one server, i.e.
one replica Dy, is selected and then moves to the
server Dj;. Here, an agent A takes another replica
Djj, in the candidate set Cand;(A). If the agent A
updates objects, all the servers in C'(D;) are taken
and replicas in all the servers are manipulated by
A. This is similar to a famous two-phase locking
(2PL) protocol [4]. On the other hand, an agent
A issuing read takes a subset (), of the candidate
set Cand;(A), which is a read quorum. The agent
A issues write to servers in a write quorum Q.
Here, Q, N Qu # ¢ and Q, U @, = Cand;(A).
This shows a quorum-based protocol [5].

In another case, the agent A is composed of mul-
tiple modules Ay, ..., A, (m > 1) which can be per-
formed in any order and concurrently. Here, each
module Ay can be performed on a server Dj;, (h =
1, ..., m). As presented in the examples, there are

g 750

two cases with respect to how many servers to be
taken by an agent A at a server D;:
1. One server in the candidate set Cand;(A) is
taken.
2. Multiple servers in Cand;(A) are taken.

In the first case, we have to discuss which server
in the candidate set Cand;(A) to be taken. For ex-
ample, a server Dj; which is nearest to D; is taken.
A server which is least loaded can be also taken.

In the second case, multiple servers, possibly all
the servers in the candidate set Cand;(A) are taken.
In addition to discussing which servers to be taken
in Cand;(A), we have to discuss how to find an
optimal route to visit all the servers in the candi-
date set Cand;(A) [Figure 2]. For example, a route
whose communication cost is the minimum is se-
lected. This shows a serial computation. In an-
other way, the agent A can be splitted into multiple
subagents A, ..., Ap, [Figure 3]. Each subagent
Ay, is issued to a server Djj in Cand;(A). The sub-
agents A1, ..., A, are concurrently performed on
object servers. After manipulating objects in the
servers, the subagents are merged into one agent
A again. Each subagent Aj; might bring data dj
obtained from an object server Dj;. We have to
discuss where all the subagents are merged into an
agent A. One idea is to take one object server D
where a subagent Ay is performed and the data dj
is the largest in all the subagents A1, ..., Am.

Djl

TN

() L

Di

Figure 2: Optimal routing.
@\\ @ Djm
Di

Figure 3: Split and merge of agents.

Di1

()

3.3 Operations on agents

As discussed here, agents are moving, splitted to
multiple agents, and merged into one agent. Fol-
lowing operations on agents are supported by each
object server:

研究会Temp
－75－

1. A = create-agent(): a new agent is created.
An object server where an agent A is created
is referred to as home server of A.

2. A’ = clone-agent(A): a clone A’ of an agent A
is created.

3. split-agent(A, {A1, ..., An}): one agent A is

splitted into multiple subagents A1, ..., Ay, (m
> 1).

4. merge-agent({A1, ..., An}, A): multiple
agents Aq, ..., Ay, are merged into an agent
A.

5. annihilate-agent(A): an agent A is destroyed.

6. C = cand-agent(A, D;): a candidate set C' =
Cand;(A) is obtained.

7. D; = select-agent(A, D;, C, S): one server D;
is selected from a candidate set C according to
the strategy S. If S = One, an optimal server
Dj is selected in C. If § = All, a server D; to
be visited from D; is selected according to an
optimal writing strategy. All the servers in the
candidate set C' are to be visited.

8. move-agent(A, D;, D;): an agent A in a server
D; is moved to another a server D;.

9. negotiate-agent(A, {A1, ..., Apn}): an agent
A negotiates with other agents Ay, ..., Ay, to
make some agreement. A decision do, abort,
block, or retreat is returned.

10. land-agent(A, D;): if an agent A can land at a
server D;, true is returned. Otherwise, false.

11. conflict-agent(A, D;): if there is another
agent which conflicts with an agent A in a
server D;, true is returned. Otherwise, false.

12. term-agent(A): if an agent A can finish, yes is
returned. Otherwise, no is returned.

13. commit-agent(A): if an agent A satisfies com-
mitment condition A commits. Otherwise, A
aborts.

An agent A is performed on an object server D
as follows;

1. An agent A is created at a home server D, i.e.
A = create-agent(D).

2. After the agent A is performed in a current
server D, A moves to another server if the ter-
mination condition term-agent(A) is not sat-
isfied. A candidate set C is obtained; C' =
cand-agent(A, D).

3. If parallel strategy is taken, an agent A is split-
ted to agents Aj, ..., Ay, i.e. split-agent(A,
{A1, ..., Ay}). Then, Ay, ..., A, move to
candidate servers in C.

4. If serial strategy is taken, a destination server
D; of the agent A is decided, i.e. D; = route-
agent(A, D).

5. If the agent A could land at the destination
server D;, i.e. land-agent(A, D;) is true, the
agent A moves to a server D;.

6. If the agent A does not conflict with agents
Ay, ..., A, in D, ie. conflict-agent(A, D;)
is false, A is performed on D;. Otherwise, A

negotiates with the agents Ay, ..., A, conflict-
ing with A, negotiate-agent(A, {A1, ..., Ap}).
If do is returned, A starts. The agent A is
started, aborted, and blocks on the server D; if
do, abort, and block are returned, respectively.

7. If the agent A is successfully performed on the
server D;, a surrogate agent A; of A is cre-
ated and resides at D;, A; clone-agent(A). If
there is no other destination, i.e. all the ob-
ject servers are manipulated, term-agent(A)
is true, the commitment procedure is started
based on the consensus condition Cons(A).
Otherwise, go to 2.

4 Consensus among Agents

An agent A manipulates objects in multiple ob-
ject servers Dy, ..., Dy, (m > 1). After finishing
manipulating objects in all the object servers, the
agent A commits if some condition C' on the servers
Dy, ..., Dy, is satisfied. Otherwise, A aborts. For
example, an atomic all-or-nothing condition is used
to realize the atomicity of a transaction. That is,
the agent commits only if all the object servers are
successfully updated. Otherwise, the agent aborts,
i.e. no update is done on the objects in any object
server. The two-phase commitment (2PC) proto-
col [4] is used to realize the all-or-nothing principle
in distributed database systems. In another exam-
ple, an application would like to book one hotel.
The application issues a booking request to multi-
ple hotel objects. Here, the application can commit
if at least one hotel object is obtained. Thus, if at
least one of the servers is successfully manipulated,
the agent A commits. There are following consensus
conditions;

[Consensus conditions]

1. Atomic consensus: an agent is successfully
performed on all the object servers, i.e. all-
or-nothing principle. This is a condition used
in the traditional two-phase commitment pro-
tocol.

2. Majority consensus: an agent is successfully
performed on more than half of object servers.

3. At-least-one consensus: an agent is success-
fully performed on at least one object server.

4. (’;) consensus: an agent is successfully per-
formed on more than r out of n servers (r <

The atomic, majority, and at-least-one consensus
conditions are shown in forms of (Z) (r(n+nl)/2"')’
and (71’) consensus ones, respectively. More general
consensus conditions are discussed in a paper [8].
Each agent A is assumed to have a consensus con-
dition Cons(A) given by an application.

Suppose an agent A finishes manipulating ob-
jects in object servers D4, ..., D,,. Let A; be a
surrogate agent of the agent A in an object server
D; [Figure 4]. Suppose another agent B might come
to D; after the agent A leaves an object server D;.
Here, the agent B negotiates with the surrogate

g 7ed

研究会Temp
－76－

agent A; of the agent A if B conflicts with A. Af-
ter the negotiation, the agent B might take over
the surrogate A;. Thus, when the agent A finishes
visiting all the object servers, some surrogate may
not exist. The agent A starts the negotiation proce-
dure with its surrogates A1, ..., Ap. If a consensus
condition C' on Ay, ..., A,, is satisfied, the agent
A commits. For example, an agent commits if all
the surrogates safely exist in the atomic consensus
condition. As discussed in a following section, sur-
rogates do negotiation with agents. Then, the sur-
rogate abort. If the surrogates exit, the computa-
tion performed by the agent is successful. Then, the
surrogate agents of A are annihilated. Here, other
agents conflicting with the agent A are allowed to
manipulate objects.

oSG e vy

D1 Di Dm
() : surrogate agent of A

Figure 4: Surrogate agents.

5 Negotiation Strategies
5.1 Protocol

Unless the landing conditions are satisfied, the
agent A can not land at the server D;. Here, the
agent A can take one of the following ways:

1. The agent A waits in the current object server
D;.

2. The agent A finds another object server Dy
which has objects to be possibly manipulated
before D; by A.

3. The agent A negotiates with other agents in D;
which hold resources.

4. The agent A aborts.

Suppose an agent lands at a current object server
D;. Here, there might be other agents Bj, ..., By
which are being performed on the object server D;.
Each agent B; is an agent or surrogate agent of an
agent. If the agent A conflicts with some agent B;
on an object o, A negotiates with B; with respect
to which agent A or Bj; holds the object 0. There
are following negotiation strategies:

1. The agent A blocks until the agent B; commits.

2. The agent A takes over By, i.e. B; releases the
objects and blocks. Then A starts.

3. Bj aborts and A starts.

The first way is similar to the locking protocol.
An agent A blocks if some agent B holds an object
o in a conflicting way with the agent A. If B waits
for release of an object held by A, A and B are
deadlocked. Thus, deadlock among agents may oc-
cur. When an agent A blocks in a object server D;,

gr7d

a timer is started. If the timer expires, the agent A
takes one of the following ways:
1. The agent A retreats to an object server D;
which A has passed over.
2. Every surrogate A; of A initiates a deadlock
detection agent LD;(A).

In the second way, an agent A takes over an agent
Bj in an object server D; if A conflicts with B; and
Bj holds an object. Here, A starts to do the nego-
tiation with an agent B; on D; by using a following
negotiation protocol :

[Negotiation protocol]

1. An agent A sends a can-I-use message CIU (o,
op) to an agent B; on an object server D;. This
means that an agent A would like to manipu-
late an object o with a method op in an object
server Dj.

2. On receipt of CTU (o, op) from an agent A, an
agent B; sends OK to A if B; can release the
object o or B; does not mind if A manipulates
the object o. Here, there are two approaches
to Bj’s releasing the object o :

a. Bj aborts if A precedes Bj.

b. B; rolls back to a checkpoint and then
restarts if A precedes B;. Otherwise, B;
sends No to A.

3. On receipt of OK from Bj, A starts manipu-
lating the object o.
4. On receipt of No from Bj, there are following
ways:
a. A blocks until A receives OK/NO from
B;.
b. A aborts.
c. A triggers the second level negotiation
protocol. [

If the agent B; agrees with the agent A in the
negotiation protocol, A can manipulate objects by
taking over B;. In the second way, the agent B;
not only releases the object but also aborts.

5.2 Resolution of confliction

There are two types of agents;
1. Ordered agents.
2. Unordered agents.

Every pair of ordered agents manipulate objects
in a well-defined way. Agents are ordered. FEach
agent A is assigned a precedent identifier pid(A).
An agent A precedes another agent Az (41 — Asz)
iff pid(A;) < pid(As). For example, a timestamp [4]
can be used as an identifier of an agent. That is, the
identifier pid(A) of an agent A is time ts(A) when
A is initiated at the home server. An agent A
precedes another agent A, only if ts(A1) < ts(A2).
If the timestamp with identifier of home server is
used as a precedent identifier of an agent, either
Ay precedes As or Ay precedes A; for every pair
of different agents A; and As. That is, the agents
are totally ordered. If a logical clock like vector
clock [6] is used as precedent identifier, the agents

研究会Temp
－77－

are partially ordered. An agent A; is concurrent
with another agent A, iff neither A; precedes As
nor As precedes A;.

Suppose multiple agents A, ..., Ap(m>1)
would like to manipulate an object o in an ob-
ject server D; and conflict with each other. The
agents Aq, ..., A, are ordered by using the prece-
dent identifiers of the agents. Suppose pid(A4;) <
... < pid(Ap). An agent A, manipulates an object
o before another agent A; if pid(As) < pid(A:). If
A, and A; are concurrent, As and A; are allowed
to be performed in any order. However, if A; and
A conflict on a pair of servers D; and D;. A, and
A; are required to be performed in a same order at
D; and D;. There never occurs deadlock.

Unordered agents are not ordered. Like locking
protocols, an unordered agent had obtained an ob-
ject if no conflicting agent obtains the object. Sup-
pose an agent A; passes over an object server D
and is moving to another server D>, and another
agent A, passes over Do and is moving to Dq. If
Ay and As conflict on each of Dy and Ds, neither
A; can land at Dy nor A; can land at D;. Here,
deadlock occurs.

Here, an agent B; means an “agent” or a sur-
rogate agent in the object server D;. An agent A
would like to land at an object server D; and con-
flicts with an agent B; in Dj;. First, suppose B; is
a surrogate of an agent B. The surrogate agent B;
makes a following decision depending on the com-
mitment conditions;

1. B; takes the at-least-one consensus principle;
If B; knows at least one surrogate exists, B;
releases the object and aborts. B; informs the
other surrogates of this abort.

2. Bj takes the majority consensus principles: If
Bj knows more than half of the surrogates ex-
ist, B; releases the object and aborts. B; in-
forms the other surrogates of this abort.

3. Bj takes () consensus: If B; knows more than
r of the surrogate agents exist, B; releases, the
object and aborts.

As discussed here, a surrogate may be aborted
in the negotiation with other agents and due to the
failure of the server. There are two states of each
surrogate B;, abortable and commitable. If B; is in
abortable state, B; can be aborted. For example, if
another agent A conflicting with B; takes over B;
by the negotiation between A and B;, Bj; aborts.
The agent B of the surrogate B; eventually tries to
commit. B informs all the surrogates of the com-
mitments by sending Prepare messages. On receipt
of the prepare message, B; enters commitable state,
possibly saving update data in a log. Here, B; does
not abort in the negotiation.

6 Concluding Remarks

This paper discussed an agent model for transac-
tions which manipulate multiple object servers. An
agent first moves to an object server and then ma-

0780

nipulates objects. The agent autonomously moves
around the object servers to perform the computa-
tion. If the agent conflicts with other agents, the
agent negotiates with the other agents. The negoti-
ation is done based on the commitment conditions
and types of agents, i.e. ordered and an ordered.

References

[1] Aglets Software Development Kit Home,
http://www.trl.ibm.com/aglets/

[2] American National Standards Institute,
“Database Language SQL,” Document ANSI
X3.135, 1986,

[3] Arai, K., Tanaka, K., and Takizawa, M.,
“Group Protocol for Quorum-Based Repli-
cation,” Proc. of IEEE ICPADS’00, 2000,
pp-57-64.

[4] Bernstein, P.A., Hadzilacos, V., and Good-
man, N., “Concurrency Control and Recovery
in Database Systems,” Addison Wesley, 1987.

[5] Garcia-Molina, H. and Barbara, D., “How
to Assign Votes in a Distributed System,”
Journal of ACM , Vol.32, No.4, 1985, pp.841-
860.

[6] Mattern, F., “Virtual Time and Global States
of Distributed Systems,” in Parallel and Dis-
tributed Algorithms (Cosnard, M. and Quin-
ton, P. eds.), North-Holland, Amsterdam,
1989, pp.215-226.

[7] Omicini, A., Zambonelli, F., Klusch, M.
and Tolksdorf, R., “Coordination of Internet
Agents,” Springer-Verlag, 2001.

[8] Shimojo, I., Tachikawa, T., and Takizawa, M.,
“M-ary Commitment Protocol with Partially
Ordered Domain,” Proc. of the 8th Int’l Conf.
on Database and Ezxpert Systems Applications
(DEXA’97), 1997, pp.397-408.

[9] Skeen, D., “Nonblocking Commitment Proto-
cols,” ACM SIGMOD, 1982, pp.133-147.

[10] Tanaka, K. and Takizawa, M., “Quorum-based
Locking Protocol in Nested Invocations of
Methods,” Proc. of DEXA 2001, 2001, pp.857-
866.

研究会Temp
－78－

