
Replication Models of Object-based Systems

Kenichi Hori and Makoto Takizawa
Department of Computers and Systems Engineering

Tokyo Denki University
E-mail {hori, taki}@takilab.k.dendai.ac.jp

We discuss how to invoke methods on replicas of objects in a nested manner. If a method t is invoked
on multiple replicas and each instance of t on the replicas invokes a method u on another object y, the
method u is performed multiple times on the object of y although u is required to be performed just once.
Then, the object gets inconsistent. This is redundant invocation. In addition, if each instance of the
method t issues a request u to its quorum, more number of the replicas are manipulated than the quorum
number of the method u. This is quorum explosion. We discuss an invocation protocol named Q protocol
to resolve the redundant invocation and quorum explosion, and evaluate the protocol.

オブジェクトベースシステムにおける多重化モデル
堀　健一 滝沢 誠

東京電機大学大学院理工学研究科情報システム工学専攻

トランザクションが、複数のレプリカに対して、メソッド tの実行を要求し、メソッド tの各インスタン
スが、複数のレプリカに対して更新メソッド uの実行を要求するとする。このとき、メソッド uのインス
タンスによる更新処理が、同一のレプリカ上で複数回実行される場合がある。これを冗長呼び出しとする。
加えて、メソッド uの送信先のレプリカの集合（コーラム）が、送信元の tのインスタンス間で異ってい
る場合、結果的に uのコーラム数以上のレプリカが操作されてしまう。これを、コーラム爆発とする。本
研究では、冗長呼び出しとコーラム爆発を解決する入れ子呼び出し方法を示し、これの評価を行う。　

1 Introduction

Objects are replicated in order to increase the
reliability and availability in object-based appli-
cations. There are many discussions on how to
replicate state-full servers like database servers
[4, 6–9, 12, 13], like the two-phase locking protocol
[6] and quorum-based protocol [8, 9]. An object
is an encapsulation of data and abstract methods.
A pair of methods conflict on an object if the re-
sult obtained by performing the methods depends
on the computation order. In the paper [12], the
quorum concept for read and write is extended to
abstract methods. Suppose a pair of methods t
and u are issued to replicas x1 and x2 of an ob-
ject x. Even if a replica is updated by t or u, Nt
+ Nu ≤ a only if t and u are compatible.

In object-based systems, methods are invoked
in a nested manner. Suppose a method t on an
object x invokes a method u on another object y.
Let x1 and x2 be replicas of the object x. Let y1
and y2 be replicas of y. Suppose a method t is
issued to the replicas x1 and x2. Every method is
assumed to be deterministic. Then, the method t
invokes another method u on replicas y1 and y2.
Here, the method u is performed twice on each
replica although only one instance of u should be
performed. If multiple instances of the method u
are performed on some replicas, the replicas are
gets inconsistent. This is a redundant invocation.

An instance of the method t on the replica x1 is-
sues a method u to replicas in its own quorum Q1,
and another instance of t on x2 issues u to replicas
in Q2 where |Q1| = |Q2| = Nu but Q1 �= Q2. More
number of replicas are manipulated for a method
u than Nu, i.e. |Q1 ∪ Q2| ≥ Nu. If the method u
furthermore invokes another method, replicas to
be manipulated are more increased. Even all the
replicas may be manipulated although the quorum
number is smaller than the little number of the
replicas. This is a quorum explosion. In order to
increase the reliability and availability, a method
issued has to be performed on multiple replicas.
On the other hand, the replicas may get inconsis-
tent by the redundant invocations and the over-
head is increased by the quorum explosion. We
discuss how to resolve the redundant invocation
and quorum explosion to occur in nested invoca-
tions of methods on multiple replicas.

In section 2, we discuss what kinds of prob-
lems to occur in nested invocation of methods on
replicas. In sections 3 and 4, we discuss how to
resolve the redundant invocation and the quorum
explosion. In section 5, we evaluate the protocol.

2 Nested Invocation on Replicas

2.1 Methods
Methods are procedures for manipulating ob-

jects. We classify methods into dependent and in-
dependent types according to whether or not the

研究会Temp
マルチメディア通信と分散処理

研究会Temp
108－７

研究会Temp
（２００２． ６． ６）

研究会Temp
－37－

results obtained by performing methods depend
on object state. Computation of a dependent
method t depends on state of an object x . In-
dependent methods are performed independently
of object state. Methods are also classified into
update and non-update types of methods accord-
ing to whether or not object state is changed by
performing methods.

Let t1 ◦ t2 show that a method t2 is performed
on an object after a method t1. Let us consider
a method display on counter . Each display shows
same value even if any number of display is per-
formed, i.e. display ◦ display = display . Here,
suppose increment is performed after the first dis-
play before the second display . The second dis-
play shows different value than the first display . A
method t is referred to as conflict with a method
u iff the result obtained by performing t and u de-
pends on the computation order of t and u. Oth-
erwise, the method t is compatible with u.

2.2 Replications
As discussed by Wiesmann [13], there are dif-

ferent ways to replicate processes and database
servers. Processes are stateless while database
servers are statefull. There are three ways to repli-
cate processes, active, passive, and hybrid ones.
In the active replication [11], every replica receives
same messages in a same sequence, same compu-
tation is performed on every replica, and same
sequence of output is sent back. Here, the process
p is required to be deterministic. The process is
operational as long as at least one replica is op-
erational. In the passive replication [5], there is
one primary replica, say p1, and the other replicas
are secondary. Messages are sent to only the pri-
mary replica p1 and the computation is performed
on only the primary replica p1. No computation is
performed on any secondary replica. A checkpoint
of the primary replica p1 is eventually taken and
then is sent to all the secondary replicas. The
hybrid replication [2] is same as the passive one
except that messages are sent to not only the pri-
mary replica but also the secondary replicas.

On the other hand, database servers are state-
full. Ways to replicate database servers are clas-
sified with respect to which replica a request is
issued to eager and lazy , and when other repli-
cas are updated, primary and everywhere . Re-
quests are immediately performed on replicas as
soon as requests are issued in the eager type. On
the other hand, requests are not immediately per-
formed in the lazy one. In the primary replica-
tion, requests are performanced only on a primary
replica. In the everywhere replication, requests
are performed on all the replicas. For example,
the two-phase locking protocol [3] is an eager, ev-
erywhere type because all the replicas are updated
by a write request. The quorum-based replica-
tion [7,8] can be classified as somewhere, lazy one.

2.3 Primary-secondary replication
Objects are encapsulations of data and meth-

ods for manipulating the data. Objects are ma-
nipulated only through invoking methods sup-
ported by the objects. Here, suppose a transac-
tion T invokes a method t on an object x . The

method t is realized by invocations of other meth-
ods, say a method u on an object y . Thus, meth-
ods are invoked on objects in a nested manner.

Suppose there are replicas x1, . . ., xa (a>1) of
an object x and replicas y1, . . ., yb (b>1) of an-
other object y. One way to invoke a method t
on the replicas of x is a primary -secondary one.
First, the transaction T issues a request t to only
a primary replica x1. Then, the method t is per-
formed and then a request u in t is issued to a
primary replica y1 [Figure 1]. After the method
commits, the state of the primary replica is even-
tually transmitted to the secondary ones. For
example, a checkpoint is taken on the primary
replica and then the checkpoint data is transferred
to secondary ones. Since only one instance of the
method t invokes u, neither redundant invocations
nor quorum explosions occur. For example, sup-
pose y1 is faulty when t1 invokes u1 on a replica
y1. One secondary replica, say y2 is taken as a pri-
mary replica and t1 invokes u2 on primary replica
y2. Thus, the primary-secondary way implies less
availability. Since every request is issued to a pri-
mary replica, the primary replica is overloaded.

T t1 u1

x1 y1

x2

xa

y2

yb

.

.

.

.

.

.

: ivocation

: method

: object

: checkpoint

Figure 1: Primary-secondary replication.

2.4 Quorum-based replication
Suppose a transaction T issues a method t to

replicas in the quorum Qt = {x1, x2} where Nt

= 2. Furthermore, the method t issues a request
u to replicas of the object y in the quorum of the
method u, say Nu = 2. Let ti be an instance of
the method t performed on a replica xi (i = 1, 2).
Each instance ti issues a request u to replicas in
a quorum Qui. Suppose Qu1 = Qu2 = {y1, y2}.
Here, let ui1 and ui2 show instances of the method
u performed on replicas y1 and y2, respectively,
which are issued by a method instance ti (i =
1, 2) [Figure 2]. Suppose the method u is “y =
2∗y”. However, the replica y1 is multiplied by four
since a pair of instances u11 and u21 are performed
on y1. Thus, y1 gets inconsistent. y2 also gets
inconsistent. This is a redundant invocation, i.e.
a method on a replica is invoked multiple times
by multiple instances of a method. Since every
method is deterministic, the same computation of
the method t is performed on the replicas x1 and
x2. Here, t1 and t2 are referred to as same clone
instances of the method t. u11, u12, u21, and u22
are also same clone instances of the method u.
[Definition] A pair of instances t1 and t2 of a
method t are same clones if t1 and t2 are invoked
by a same instance or by same clones. �

研究会Temp
－38－

Each replica has to satisfy the following con-
straint.
[Invocation constraint] At most one clone in-
stance of a method invoked in a transaction is
performed on each replica if the method is a de-
pendent or update type. �

T

x1
y1

t1 u11

t2

u22

x2
y2

u21

u12

Figure 2: Redundant invocation.

In the transaction T discussed in the preceding
subsection, suppose quorums are Qu1 = {y1, y2}
and Qu2 = {y2, y3}. An instance of the method
u is performed on each replica in Qu1 ∪ Qu2 =
{y1, y2, y3}. |Qu1 ∪ Qu2| (= 3) ≥ Nu (= 2). This
means that more number of replicas of the object
y are manipulated than the quorum number Nu.
Then, the instances of the method u on the repli-
cas in Qu1 ∪ Qu2 issue further requests to other
replicas and more number of replicas are manipu-
lated. The deeper level in a transaction, the more
number of replicas are manipulated. This is quo-
rum explosion.
[Definition] A quorum of an object x for a
method t is exploded in a transaction T if same
crone instances of t invoked in T are performed
on more number of replicas of x than the quorum
number Nt. �

3 Redundant Invocation
In order to resolve the redundant invocation,

we have to make clear whether or not every pair
of instances issued to each replica are same crones
in a transaction. An identifier id(ti) for each in-
stance ti invoked on a replica of an object x is
composed of a method type t and identifier of the
object x, i.e. id(ti) = t:x. Each transaction T has
a unique identifier tid(T), e.g. thread identifier of
T . Each method t invoked in a transaction T is as-
signed a transaction identifier tid(t) as a concate-
nation of tid(T) and invocation sequence number
iseq(T , t) of t in T . iseq(T , t) is incremented
by one each time T invokes a method. Suppose
an instance ti on a replica xi invokes an instance
uk on a replica yk. id(ti) = t:x. The transac-
tion identifier tid(uk) is tid(ti):id(ti):iseq(ti, uk)
= tid(ti):t:x:iseq(ti, uk). id(uk) = u:k. Thus,
tid(uk) shows an invocation sequence of methods
from T to the instance uk.
[Theorem] Let t1 and t2 be instances of a method
t. tid(t1) = tid(t2) iff t1 and t2 are same crone
instances of the t invoked in a transaction. �

We assume that tid(T) = 6 in Figure 2. Sup-
pose T invokes a method t after invoking three

methods, i.e. iseq(T , t1) = iseq(T , t2) = 4.
Since tid(t1) = tid(t2) = tid(T):iseq(T , t1) =
tid(T):iseq(T , t2) = 6:4 and id(t1) = id(t2) = t:x,
t1 and t2 are same crone instances. t invokes an-
other method u after invoking one method. Here
iseq(t,u)=2, tid(u11) = tid(u12) = tid(t1):id(t1):2
= 6:4:t:x:2. tid(u21) = tid(u22) = tid(t2):id(t2):2
= 6:4:t:x:2. Since tid(u11) = tid(u21), u11 and u21

are same crone instances on a replica y1.
A method t invoked on a replica xh is per-

formed as follows:
1. If no method is issued to a replica xh, an

instance th is performed and a response res
of t is sent back. 〈t, res, tid(th)〉 is stored in
the log Lh.

2. If 〈t, res, tid(t′h)〉 such that tid(th) = tid(t′h)
is found in Lh, the response res of t′h is sent
back as the response of th without performing
th. Otherwise, t is performed on the replica
xh as presented at step 1.

In Figure 2, suppose u11 is issued to the replica
y1. 〈u, response of u11, tid(u11)〉 is stored in the
log L1. Then, u21 is issued. Since tid(u11) =
tid(u21), i.e. u11 and u21 are same crones, u21

is not performed but the response of u11 as the
response of u21 is sent to t2. Here, at most one
crone instance is surely performed on each replica.
In addition, each method can be performed on
some replica even if a replica is faulty.

4 Quorum Explosion

4.1 Basic protocol
Suppose a method t on an object x invokes a

method u on an object y. Let Quh be a quo-
rum of the method u invoked by an instance th
of the method t on a replica xh. In order to re-
solve the quorum explosion, Quh and Quk have to
be the same for every pair of replicas xh and xk.
If Quh = Quk = Qu, only the same replicas are
manipulated for every instance of u. If a method
is frequently invoked, the replicas in the quorum
are overloaded. The quorum of the method u has
to be randomly decided each time u is invoked. If
some replica is faulty, the quorum including the
faulty replica has to be updated. We have to
discuss a mechanism to randomly create a quo-
rum Qui for each invoker instance ti to invoke a
method u in presence of replica fault of y, Qui =
Quj only if instances ti and tj are same crones in
a transaction. Qui �= Quj can hold if ti and tj are
different crones.

We introduce a following function select to de-
cide a quorum:

1. A function select(i, n, a) gives a set of n num-
bers out of 1, . . ., a for a same initial value i
where n ≤ a. For example, select(i, n, a) =
{h | h = (i + 	 a

n

(j − 1)) modulo a for j =

1, . . ., n} (⊆ {1, . . ., a}).
2. Suppose an instance th on a replica xh invokes

a method u. I = select(numb(tid(th)), Nu,
b) is obtained, where Nu is quorum number
of u and b is a total number of replicas of y,
i.e. {y1, . . ., yb}. Let tid(th) be s1:s2:· · ·:sg.

研究会Temp
－39－

Here, numb(tid(th)) is (s1 + · · ·+ sg) modulo
a. I ⊆ {1, . . ., b} and |I| = Nu. Then, Quh

= {yi | i ∈ I}.
Every pair of same crone instances have the

same transaction identifier tid. An instance th on
every replica xh issues a method u to the same
quorum Quh as the other same crones. In ad-
dition, a quorum Q′

uk obtained for another crone
instance t′h is different for Quh. Hence, no quorum
explosion occurs [Figure 3].

th

tk

...

...

...

Quh

Quk

th

tk

.

.

.
Qu

Figure 3: Resolution of quorum explosion.

Some replica may be faulty. Suppose a method
t invokes a method u on replicas of an object y.
Let Y be a set {y1, . . ., yb} of replicas of y. Here,
suppose some replica yh is faulty. Here, the quo-
rum number Nu can be decremented by one as far
as at most k replicas of the object y are faulty, i.e.
Nu + Nv − b = k for every method v conflicting
with the method u. In one case, an invoker in-
stance does not know that the replica yh is faulty.
Here, a quorum Qui including Nu replicas are se-
lected by select . The instance ti issues a method u
to replicas of y in Qui. Since there is no response
from yh, the instance ti finds that yh is faulty.
In another case, the instance ti knows that yh is
faulty. If yh ∈ Qui, yh is removed from Qui. Here,
|Qui| = Nu − 1. Unless yh ∈ Qui, one replica yl

is removed from Qui. For example, a replica yl
where l is the minimum in Qui is selected and re-
moved from Qui. The method u is required to be
issued to (Nu − 1) replicas of the object y.

If a faulty replica yh is recovered, yh informs all
the operational replicas. Each invoker instance ti
on a replica xi obtains a same quorum Qui for
a method u to be invoked by select function. In
one case, the instance ti perceives that yh is still
faulty. If yh is included in Qhi, yh is removed from
Qui. The instance ti issues a method u to replicas
in Qui. In another case, ti knows that yh is recov-
ered. The instance ti issues u to the quorum Qui
obtained. Thus, each invoker instance can obtain
a quorum of an invoker method based on only its
own view showing which replica is operational.

4.2 Modified protocol
Each instance th on a replica xh issues a

method request u to Nu replicas of the object y.
Hence, totally Nt · Nu requests are transmitted.
We try to reduce the number of requests trans-
mitted in the network. Let Qu be a quorum {y1,
. . ., yb} (b = Nu) of the method u obtained by the
function select for each instance th. If each in-

stance th issues a request u to only a subset Quh⊆ Qu, the number of requests issued to the repli-
cas of the object y can be reduced. Here, Qu1 ∪
. . . ∪ Qua = Qu.

In order to tolerate the fault of a replica, each
replica yk in Qu is required to receive a method
request u from more than one instance of the
method t. Let r (≥ 1) be a redundancy factor ,
i.e. the number of the requests to be issued to
each replica yk in Qu. For each instance th on a
replica xh in Qt = {x1, . . . xa} where a = Nt, Quh

is constructed for the method u as follows (h = 1,
. . ., a):

If a ≥ b·r, Quh = {yk | k = 	 hb
a
} if h ≤ r

· b
Quh = φ otherwise.

If a < b·r, Quh = { yk | (1 + (h−1)b
a �) ≤

k < [1 + ((h+r−1)b
a

� −
1) modulo b]}.

For example, suppose instances t1, t2, and t3
on replicas x1, x2, and x3, respectively issue a
method request u to replicas y1, y2, y3, and y4,
i.e. Qt = {x1, x2, x3} and Qu = {y1, y2, y3, y4}.
Suppose the redundancy factor r is 2. Hence, Quh

= {yk | (1 + ((h−1)4
3

�) ≤ k ≤ (1 + ((h−1)4
3

�
+ 8

3 � − 1) modulo 4)}. Hence, Qu1 = {y1, y2},
Qu2 = {y2, y3, y4}, and Qu3 = {y3, y4, y1} for r =
2 [Figure 4(1)]. Two requests from the instances
of the method t are issued to each replica of y.
For example, suppose an instance t1 on a replica
x1 is faulty. Another instance t2 sends u to the
replicas y2, y3, and y4 in Qu2 and t3 sends u to
the replicas in Qu3. Since Qu2 ∪ Qu3 = {y1, y2,
y3, y4}, u is sent to every replica in Qu even if t1
is faulty. Qu1 = {y1}, Qu2 = {y2}, and Qu3 =
{y3, y4} for r = 1 [Figure 4(2)]. Thus, totally r
· Nu requests of the method u are issued to the
replicas in Qu. Even if (r − 1) instances of t are
faulty, u is performed on Nu replicas of y.

x1

x2

x3

t1

t2

t3

y1

y2

y3

y4

t1

t2

t3

y1

y2

y3

y4

(1) r = 2 (2) r = 1

Figure 4: Invocations.

5 Evaluation
We evaluate the invocation protocol named

quorum-based invocation (Q) protocol discussed
in this paper to resolve the redundant invocation
and quorum explosion to occur in nested method
invocations on multiple replicas. The Q protocol
is evaluated in terms of number of replicas manip-
ulated, number of requests issued, and response

研究会Temp
－40－

time compared with the primary-secondary invo-
cation (P) protocol shown in Figure 1.

T t1 t2
... tl

x1 x2 xl

ivocation level 1 2 l

Figure 5: Invocation model.

We take a simple invocation model where a
transaction T first invokes a method t1 on an ob-
ject x1, then t1 invokes t2 on x2, · · · as shown in
Figure 5. Here, let ai be the number of replicas
of an object xi (i = 1, 2, . . .). Let Ni be the quo-
rum number of a method ti (Ni ≤ ai), where i(≤ l)
shows a level of invocation. l shows the invocation
level of the transaction T . Let ri be a redundancy
factor on an object xi. In the primary-secondary
(P) protocol, only a method on a primary replica
is invoked as presented in Figure 1. Suppose a
method ti invokes another method ti+1 on a pri-
mary replica xi+1[Figure 6]. If a primary replica
xi+1 is faulty, one secondary replica x′

i+1 is taken
as a new primary replica of x and a method ti+1
on the replica xi+1 is invoked again. In addition,
the replica x′

i+1 might be faulty during invoca-
tion of ti+1. Let fi be probability that a replica
of an object xi is faulty. Thus, the higher the fault
probability fi is, the longer it takes to perform the
transaction T . We assume f1 = f2 = . . . = fl =
f .

T xi xi+1 x’
i+1

ti

ti+1

time

R

:fault

Figure 6: Primary-secondary (P) protocol.

In the Q protocol, each method ti is performed
on only Ni replicas of an object xi as long as at
least ri replicas are operational. We assume that
a1 = a2 = . . . = a = 10, N1 = N2 = . . . = Nl =
N (≤ a), and r1 = r2 = . . . = rl = r.

Figure 7 shows the number of replicas where
methods are performed in a transaction whose in-
vocation level is l. “Protocol Q” shows the Q

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Invocation level(l)

N
um
be
r o
f r
ep
lic
as
 m
an
ip
ul
at
ed

(r
=N
, r
=N
/3
)

f=0
f=0.01

f=0.05

f=0.1

f=0.3

f=0.5

Protocol Q r=(N)

Protocol Q
r=(N/3)

Protocol P

Protocol Q

Protocol P

f = 0
f = 0.01

f = 0.5

f = 0.05
f = 0.1

Protocol Q

f = 0.3

Protocol Q

Figure 7: Number of replicas manipulated.

protocol with the number of replicas a = 10 and
quorum number N = 3. Only the quorum number
N of replicas, i.e. three replicas, out of ten replicas
are manipulated at each invocation level. Proto-
col P shows number of replicas manipulated for
fault probability f(=0, 0.01, 0.05, 0.1, 0.3, 0.5).
If a replica is faulty, another replica is manipu-
lated. As shows in Figure 7, the more replicas are
faulty, the more replicas are manipulated.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Invocation level(l)

N
um
be
r o
f r
eq
ue
st
 m
es
sa
ge
s

(r
=N
, r
=n
/3
)

f=0
f=0.01
f=0.05
f=0.1
f=0.3
f=0.5
f=0.6

Protocol
Q(r=N)Protocol
Q(r=N/3)

Protocol
P

Protocol P

f = 0

f = 0.05
f = 0.1

f = 0.01

f = 0.3

f = 0.5

f = 0.6

ProtocolQ

Protocol Q(r=N)

Protocol Q
Protocol
Q(r=N/3)

Figure 8: Number of request messages issued.

Figure 8 shows the number of request messages
transmitted. In the Q protocol, rN messages are
transmitted at each invocation level. Hence, rN2l
request messages are transmitted for a transaction
with invocation level l. For r = N , N2 request
messages are transmitted at each invocation. For
r = N/3, N2/3 messages are transmitted. In Fig-
ure 8, the numbers of request messages issued are
shown for r = N and r = N/3. In the P protocol,
totally i request messages are transmitted if no
fault occurs, i.e. f = 0.

Next, let us consider response time of transac-
tion with invocation level l in the Q and P proto-
cols. Let δi be delay time to send a message from a
replica of xi−1 to a replica of xi. Let πi show time
for processing one request on a replica xi. Here,
we assume δ1 = δ2 = . . . = δ and π1 = π2 = . . . =
π. In the Q protocol, the response time RQ is (2δ
+ π)l. In the P protocol, the response time RP

is [2δ·(number of request messages) + π·(number

研究会Temp
－41－

of replicas manipulated)]l for fault probability f ,
which are obtained from Figures 7 and 8. Here, π
= α·δ. Figures 9 and 10 show the ratio RP /RQ

for α=0.25 and α=4. “α=0.25” shows that the
delay time is four times longer than the process-
ing time. “α=4” indicates that the delay time
is one fourth of the processing time. These fig-
ures show that the Q protocol supports shorter
response time than the primary-secondly (P) pro-
tocol while implying larger number of messages
transmitted. In addition the Q protocol is better
in a system where replicas are interconnected in a
high-speed local area network.

RP/RQ

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Invocation level(l)

f=0

f=0.05

f=0.1

f=0.3

f=0.5

f=0.1

f=0.3

f=0.5

f=0.05
f=0

Figure 9: Response time (α = 0.25).

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Invocation Level(l)

RP/RQ f=0

f=0.01

f=0.05

f=0.1

f=0.3

f=0.5

f = 0
f = 0.01
f = 0.05
f = 0.1

f = 0.3

f = 0.5

Figure 10: Response time (α = 4).

6 Concluding Remarks
In this paper, we discussed how transactions

invoke methods on multiple replicas of objects.
Methods are invoked in a nested manner. If meth-
ods are invoked on multiple replicas, multiple re-
dundant instances of a same method are per-
formed on a replica and more number of replicas
than the quorum number are manipulated. We
discussed the Q (quorum-based invocation) pro-
tocol where redundant invocations and quorum
explosions to occur are resolved. By using the
Q protocol with the resolution of redundant invo-
cations and quorum explosions, an object-based
system including replicas of objects can be effi-
ciently realized.

References
[1] Ahamad, M., Dasgupta, P., LeBlanc R.,

and Wilkes, C., “Fault Tolerant Computing
in Object Based Distributed Operating Sys-
tems,” Proc. 6th IEEE SRDS , 1987, pp. 115–
125.

[2] Barrett, P. A., Hilborne, A. M., Bond, P.
G., and Seaton, D. T., “The Delta-4 Extra
Performance Architecture,” Proc. 20th Int’l
Symp. on FTCS , 1990, pp. 481–488.

[3] Bernstein, P. A., Hadzilacos, V., and Good-
man, N., “Concurrency Control and Recov-
ery in Database Systems,” Addison-Wesley ,
1987.

[4] Bernstein, P. A., and Goodman, N., “The
Failure and Recovery Problem for Replicated
Databases,” Proc. 2nd ACM POCS , 1983,
pp. 114–122.

[5] Budhiraja, N., Marzullo, K., Schneider, B.F.,
and Toueg, S., “The Primary-Backup Ap-
proach,” ACM Press, 1994, pp.199–221.

[6] Carey, J. M. and Livny, M., “Conflict De-
tection Tradeoffs for Replicated Data,” ACM
TODS, Vol.16, No.4, 1991, pp. 703–746.

[7] Chevalier, P. -Y., “A Replicated Object
Server for a Distributed Object-Oriented Sys-
tem,” Proc. IEEE SRDS , 1992, pp.4-11.

[8] Garcia-Molina, H. and Barbara, D., “How
to Assign Votes in a Distributed System,”
JACM, Vol 32, No.4, 1985, pp. 841-860.

[9] Gifford, D. K., “Weighted Voting for Repli-
cated Data,” Proc. 7th ACM Symp. on Oper-
ating Systems Principles , 1979, pp. 150-159.

[10] Moss, J. E., “Nested Transactions : An Ap-
proach to Reliable Distributed Computing,”
The MIT Press Series in Information Sys-
tems, 1985.

[11] Schneider, B. F., “Replication Management
using the State-Machine Approach,” Dis-
tributed Computing Systems, ACM Press,
1993, pp.169–197.

[12] Tanaka, K., Hasegawa, K., and Takizawa,
M., “Quorum-Based Replication in Object-
Based Systems,” Journal of Information
Science and Engineering (JISE), Vol. 16,
2000, pp. 317–331.

[13] Wiesmann, M., et al., “Understanding Repli-
cation in Databases and Distributed Sys-
tems,” Proc. of IEEE ICDCS-2000, 2000,
pp.264–274.

研究会Temp
－42－

