gooboobooboobooo
gboboooboboobo
gbooboooooo

Design and I mplementation of Transactional Agents

1110 30
2001 30

Masashi Shiraishi, Takao Komiya, TomoyaEnokido, and Makoto Takizawva
Tokyo Denki University
{shira, komi, eno, taki } @takilab.k.dendai.ac.jp
Mobile agents move around object servers where the agents manipulate objects. A transactional agent is an agent which
manipul ate objects in one or more than one object server so asto satisfy some constraint. There are some types of constraints
depending on applications. ACID is an example of the constraints, which shows traditional transactions. There are other

constraints like at-least-one constraint when atransaction can commit if at-least-one object server is successfully manipul ated.
We discuss how transactions with types of constraints can commit. We discuss how to implement transactional agents.

Jobooobuoboboboobuobgobn

b o 0obdodg bodogo gogo

goodoooobobboooooogo
gcodoooooO0OooooooOoooOoooooOo0oooooO0UOoOooDOd0oDoOooDOoOOoObooO ACcIDOO
gooooboobobooboobobobooboboobobooboboboboboobobobooboboon
gbooboboobooboobobooobobobobooboobooboboobobooobboboon
gooboooboboobooboboboooooobobooboboboooboobobobobooboobobooo

1. Introduction

In traditional client-server applications, application pro-
grams on clients or a application servers issue requests to
object servers like database servers. Application programs
and objects exist in clients and servers, respectively. On the
other hand, any computers can have programs and objects
in peer-to-peer (P2P) applications. In the P2P applications,
huge number of computers are interconnected in the network
and the computers are not so reliable as server computers.
Hence, connections with mobile stations are often discon-
nected. Applications cannot manipulate objects in servers
due to the disconnection.

In database applications, transactions manipulate objects
so as to satisfy ACID (atomicity, consistency, isolation, and
durability) properties [6]. For example, objects in multiple
object servers are required to be atomically manipulated. In
the traditional systems, objects are locked to serialize mul-
tiple transactions [6, 8, 10]. In timestamp ordering proto-
col [6], transactions are totally ordered in their timestamps.
Transactions manipulate objects according to the timestamp
order, i.e. the elder, the earlier. In addition to supporting the
serializability, the atomic manipulation of multiple servers
has to be supported. The two-phase commitment protocol
[6,10] iswidely used to realize the atomicity among multiple
database systems. The two-phase commitment protocol sup-
ports robustness against server faults but not against applica-
tion fault, i.e. servers may block dueto client faults[15].

In another computation paradigm, programs named mo-
bile agents [1] manipulate objects by moving around object
servers. An agent first lands at an object server and then is
performed to manipul ate objectsin the object server. Agents
manipul ate objects only in local object servers without is-
suing requests to remote object servers in a network. After
manipulating all or some object servers, an agent makesade-
cision on commit or abort. For example, an agent commits
only if all the object servers are successfully manipulated.

01670

Thus, each agent hasits own commitment condition. In ad-
dition, an agent negotiates with another agent if the agent
manipulates objects in a conflicting manner. Through the
negotiation, each agent autonomously makes a decision on
whether the agent continues to hold the objects or gives up
to hold the objects. We discuss how transactional agents ma-
nipulate multiple object servers by using agentsin presence
of server and application faults.

In section 2, we present a model of object server. In sec-
tion 3, we present an agent model for processing transactions
which manipulate multiple object servers. In section 4, we
discuss how agents negotiate with other agents. In section 5,
we discuss commitment conditions of transactional agents.
In section 6, we discuss implementation of mobile agents.

2. System Model
2.1. Object servers

A systemis composed of object servers Dy, ..., D,, (m >
1), which are interconnected with reliable, high-speed com-
munication networks. The networks are assumed to be reli-
able, i.e. messages are delivered to destinations in sending
order with neither duplication nor loss of message. Each ob-
ject server supports a collection of objects and methods for
manipulating the objects. Objects are encapsulations of data
and methods.

Each object server supports following methods to manipu-
late objectsin the server:

1. begin-trans: A subtransaction starts. Methodsissued
by the subtransaction are recorded in the log.
2. op(0): A method op is performed on an object o.

3. prepare: Thelog of asubtransaction issavedin asta-
ble memory.

4. commit: A database is physically updated by using
the log and a subtransaction commits.

研究会Temp
マルチメディア通信と分散処理
コ ン ピ ュ ー タ セキュリティ

研究会Temp
（２００３． ２． ２８）

研究会Temp
111－30

研究会Temp
20－30

研究会Temp
－167－

5. abort: A subtransaction aborts, i.e. database is not
updated and log is removed.

If result obtained by performing apair of methods op; and
op»2 depends on a computation order of op; and ops, opy
and op- are referred to as con flict on the object. For ex-
ample, a pair of methods increment and decrement do not
conflict, i.e. are compatible on the counter object. On
the other hand, reset conflicts with increment and decre-
ment on the counter object. If a method op; from atrans-
action T3 is performed before a method op, from another
transaction T, and the methods op; and op, conflict, every
method op3 from T isrequired to be performed before every
method op, from T5 conflicting with the method ops. This
isaserializability property of transaction [6, 8]. There are
locking protocols [6, 8, 10] and timestamp ordering proto-
col [6] to realize the serializability.

If atransaction manipul ates objectsin multiple object serv-
ers, the two-phase commitment protocol [6] is used to re-
alize the atomic manipulation of the objects in the object
servers. The commitment protocol is robust for failure of
object server. However, if the application server isfaulty, al
the operational object servers might block [6,15]. Thus, the
two-phase commitment protocol is not robust against client
fault.

3. Computation Model of Agent

An agent is a program which can be autonomously per-
formed on one or more than one object server. An agent
issues methods to an object server to manipulate objects in
an object server where the agent exists. For example, a pro-
cedure of an agent is written in Java [3, 13]. Every object
server isassumed to support a platform to perform agents.

First, an agent A is autonomously initiated on an object
server. The procedure and data of an agent A arefirst stored
in the memory of an object server D;. If enough resource
like memory to perform the agent A isallocated for the agent
A ontheobject server D;, theagent A can move to the object
server D;, i.e. the agent A can land at the object server D;.
Here, the object server D; isreferred to as current for the
agent A.

Suppose an agent A lands at an object server D; to manip-
ulate an account object through a method increment. Here,
suppose another agent B is not resetting the account object.
Since reset conflicts with increment, the agent A cannot be
started. A pair of agents A; and A, arereferred to as conflict
if the agents A; and A, manipulate a same object through
conflicting methods. After landing at an object server D,
the agent A is allowed to be performed on the object server
D; if thereisno agent on an object server D; which conflicts
with an agent A.

Suppose an agent A isat an object server D;. After finish-
ing manipulating the object, the agent A moves to another
agent D; [Figure 1]. Suppose there are multiple possible
object servers D1, . . ., Djy, (m > 1) wherethe agent A can
land. Let Cand;(A) be acandidate server set, i.e. acollec-
tion of the possible object servers {Dj1, ..., Djy, } a which
an agent A can land from an object server D;. For example,
there are replicas D, . .., Dj,, of some object server D;.

= () ===
B
Di Dj
Q : agent

/\ :data
Figure 1. Agent.

Cand;(A) isacluster C(D;) of thereplicas D1, ..., Djp,.
For example, if an agent A only reads objects, one replica
server Dy, is selected and then moves to the object server
Dy, If the agent A updates objects, &l the object serversin
C(D;) are manipulated by the agent A. Thisis similar to a
famous two-phase locking (2PL) protocol [6]. On the other
hand, an agent A issuing aread method visits object servers
inasubset Q... The candidate set Cand;(A) is aread quo-
rum. The agent A issues write method to object serversina
write quorum Q... The agent A visits al the object servers
inQy. Here, Q, N Q. # ¢pand Q. UQ,, = Cand;(A). If A
conflicts with other agents on areplica, A waits. This shows
a quorum-based protocol [7].

An agent A can be replicated in Ay, ..., Ay (m > 2).
Each replica A; is autonously performed. By replicating an
agent, parallel processing and fault- tolerance can be real-
ized.

4. Model of Transactional Agent

4.1. Commitment conditions

An agent A manipulates objects in multiple object servers
by moving around the object servers. A scope Scp(A) of
an agent A means a set of object servers which A possibly
manipulate. For example, an agent manipulate replicas of
object servers. Here, the scope of the agent is a set of the
replicas. If an agent A finishes manipulating each object
server D;, the commitment condition Com(A) of the agent
A is checked. For example, an agent A commits if all the
servers are successfully manipulated.

[Commitment conditions]

1. Atomic commitment: an agent is successfully per-
formed on al the object servers, i.e. all-or-nothing
principle. Thisisacommitment condition used in the
traditional commitment protocols [8, 15].

2. Majority commitment: an agentissuccessfully per-
formed on more than half of the object servers.

3. At-least-one commitment: an agent is successfully
performed on at least one object server.

4. (") commitment: an agent is successfully performed
on more than r out of n object servers (r < n).

5. General commitment. some condition is satisfied
for the object servers. [

The atomic, magjority, and at-least-one commitment condi-
tions are shown in forms of (), (r(nﬁ)/zﬂ)' and (') com-
mitment conditions, respectively. More general commitment
conditions with preference are discussed in a paper [14].

0 1680

研究会Temp
－168－

Each agent A is assumed to have a commitment condition
Com/(A) given by an application. There are still discussions
on when the commitment condition Com/(A) of an agent
A can be applied while the agent A is moving an object
server. Let H(A) beaset of object servers, possibly ordered,
which an agent A has manipulated, i.e. passed over(H (A) <
Sep(A)). In the atomic commitment condition, Com(A) can
hold only of all the object servers to be manipulated are ma-
nipulated, i.e. H(A) = Scp(A). On the other hand, Com(A)
can hold over if only one object server is manipulated, i.e.
H(A) = 1in the at-least-one commitment condition.

If an agent A leaves an object server D;, an agent named
surrogate of Aislefton D; [Figure 2]. The surrogate agent
A; till holds objects in the object server D; manipulated by
the agent A on behalf of the agent A.

Suppose another agent B might come to an object server
D; dfter the agent A leaves the object server D;. Here, the
agent B negotiates with the surrogate agent A; of the agent
A if the agent B conflicts with the agent A. After the nego-
tiation, the agent B might take over the surrogate A;. Thus,
when the agent A finishes visiting al the object servers,
some surrogate may not exist, due to the fault and negoti-
ation with other agents. The agent A starts the negotiation
procedure with its surrogates Ay, . . ., A,,. If acommitment
condition Com(A) on the surrogates A4, ..., A,, is sdtis
fied, the agent A commits. For example, an agent commits
if al the surrogates safely exist in the atomic commitment
condition. As discussed in the following section, surrogates
do negotiation with other agents. Then, the surrogate may
abort if another agent is decided to take over objects held
by the surrogate by the negotiation. If the surrogates exist,
the computation performed by the agent can be successfully
terminated. Then, the surrogate agents of the agent A are
annihilated. Here, other agents conflicting with the agent A
are alowed to manipulate objects.

G — D

D: Di Dm
@/ surrogate agent of A

Figure 2. Surrogate agents.

As discussed here, a surrogate may be aborted in the ne-
gotiation with other agents or due to the fault of the object
server. There are two states of each surrogate B;, abortable
and commitable. If the surrogate B; isin abortable state, B;
can be aborted. For example, if another agent A conflicting
with the surrogate B; takes over the surrogate B; through
the negotiation between A and B, the surrogate 5; aborts.
The agent B of the surrogate B; eventually tries to commit.
The agent B informs all the surrogates of commit by send-
ing Prepare messages. On receipt of the prepare message,
the surrogate B; enters commitable state where update data
is saved in alog. Here, the surrogate B; does not abort in
the negotiation.

0 1690

abort /

Figure 3. States of surrogate.

4.2. Resolution of confliction

Suppose an agent A moves to an object server D; from
another object server D;. An agent A cannot be performed
on an object server D; if there is an agent or surrogate B
comflicting with A. Here, the agent A can take one of the
following ways:

1. Theagent A in D, waitsuntil the agent A can land at
an object server D;.

2. The agent A finds another object server D;, which has
objects to be possibly manipulated before the object
server Dj .

3. The agent A negotiates with the agent B in the object
server Dj .

4. Theagent A aborts.

Suppose there are other agents By, . . ., By, which are being
performed on the object server D;. Each agent B; shows an
agent or surrogate agent of an agent. If the agent A conflicts
with some agent B; on an object o, the agent A negotiates
with the agent B; with respect to which agent A or B; holds
the object o [Figure 4]. There are following negotiation poli-
cies.

Figure 4. Conflicting agents.

[Negothiation policies]
1. The agent A blocks until the agent B; commits.
2. Theagent A takesover theagent B;. That is, the agent
B; releases the objects and blocks, and then the agent
A starts.
3. Theagent B; aborts and the agent A starts. O
The first way is similar to the locking protocol. An agent
A blocks if some agent B holds an object o in a conflicting
way with the agent A. If the agent B waits for release of an
object held by the agent A, a pair of the agents A and B are
deadlocked. Thus, deadlock among agents may occur. When
an agent A blocks in an object server D;, atimer is started.
If the timer expires, the agent A takes one of the following
ways.
1. The agent A retreats to an object server D; which A
has passed over. The surrogates of the agent A which

研究会Temp
－169－

have been performed before the object server D; are
aborted. Then, the surrogate A; on D; restarts.

2. Every surrogate A; of the agent A initiates a deadlock
detection agent LD;(A).

In the second way, an agent A takes over an agent B; in
an object server D; if the agent B holds an object and the
agent A conflictswith B;. Here, the agent A starts the nego-
tiation with the agent B; on the object server D; by using a
following negotiation protocol :

[Negotiation protocol]

1. An agent A sends a can-I-use message CIU (o, op)
to an agent B; on an object server D;. This means
that an agent A would like to manipulate an object o
through amethod op in an object server D;.

2. Onreceipt of amessage C'IU (o, op) from an agent A,
an agent B; sends an OK message to the agent A if
the agent B; can relesse the object o or the agent B;
does not mind if the agent A manipulates the object
o. Here, there are two approaches to the agent B;'s
releasing the object o :

a The agent B; aborts if the agent A precedes the
agent B, e.g. thepriority of theagent A ishigher
than the agent B.

b. Theagent B; rolls back to acheckpoint and then
restarts if the agent A precedes the agent B;.

Otherwise, the agent B; sendsa N o message to the

agent A.

3. On receipt of OK from the agent B;, the agent A
starts manipulating the object o.
4. Onreceipt of No from the agent B;, there are follow-
ing ways:
a. The agent A blocks until the agent A receives
OK/NO fromthe agent B;.
b. Theagent A aborts. (J

If the agent B; agrees with the agent A in the negotiation
protocol, the agent A can manipulate objects by taking over
the agent B;. In the second way, the agent B; not only re-
leases the object but also aborts. Each agent autonomously
makes a decision on which way to be taken through negotia-
tion with other conflicting agents.

4.3. Decisions

Therearetwotypes of agents, ordered agents and unordered
agents. Every pair of ordered agents manipulate objects in
a well-defined way. Each ordered agent A is assigned a
precedent identifier pid(A). Anagent A; precedes another
agent As (A — Ap) iff pid(Ay) < pid(As). For example, a
timestamp [6] can be used as an identifier of an agent. That
is, theidentifier pid(A) of an agent A istime ts(A) when the
agent A isinitiated at the home server. Anagent A, precedes
another agent A, only if ts(A1) < ts(As). If the timestamp
with identifier of home server is used as a precedent identi-
fier of an agent, either A, precedes A, or A; precedes A, for
every pair of different agents A; and As. That is, the agents
are totally ordered in the precedent identifiers. If alogical
clock like vector clock [12] is used as precedent identifier,
the agents are partialy ordered in the precedent identifiers.

An agent A; is concurrent with another agent A, (A; || A2)
iff neither A; precedes A; nor A, precedes A;. Here, the
agents A; and A, can be performed on an object server in
any order.

Suppose multiple agents Ay, . . ., A,,(m>1) would like to
manipul ate an object o in an object server D; and the agents
conflict with each other. Theagents A4, .. ., A,,, are ordered
by using the precedent identifiers of the agents. Suppose
pid(Ay) < ... < pid(A,,). An agent A, manipulates an
object o before another agent A; if pid(A4;) < pid(Ay). If a
pair of the agents A, and A; are concurrent (4, || A), the
agents A, and A, are allowed to be performed on the object
o in any order. However, if a pair of the agents A, and A,
conflict on apair of object servers D; and D, the agents A,
and A, are required to be performed in a same order at the
object servers D; and D;. There never occurs deadlock.

Like locking protocols, an unordered agent can obtain an
object if no conflicting agent obtains the object. Suppose
an agent A; passes over an object server D, and is moving
to another server D5, and another agent A, passes over the
object server D, and is moving to D, as shown in Figure
5. If a par of the agents A; and A, conflict on each of
the object servers D, and D5, neither the agent A, can be
performed on the object server D» nor the agent A, can be
performed on the object server D, . Here, deadlock occurs.

PPt

D1 D2
Figure 5. Deadlock.

Here, an agent B; means an “agent” or asurrogate agent in
the object server D;. Anagent A would like to be performed
on an object server D; but conflicts with an agent B; in D;.
First, suppose an agent B; is asurrogate of an agent B. The
surrogate agent B; makes afollowing decision depending on
the commitment conditions:

1. The surrogate B; takes the at-least-one commitment
principle: If the surrogate B; knows at |east one sur-
rogate of the agent B exists, the surrogate B; releases
the object and aborts. The surrogate B; informs the
other surrogates of this abort.

2. Thesurrogate B; takes the majority commitment prin-
ciples: If thesurrogate B; knows more than half of the
surrogates of B exist, the surrogate B; rel eases the ob-
ject and aborts. The surrogate B; informs the other
surrogates of this abort.

3. The surrogate B; takes the (') commitment: If the
surrogate B; knows more than r surrogate agents of
the agent B exist, the surrogate B; releases the object
and aborts. [

g 1vo0

研究会Temp
－170－

5. Implementation
5.1. Environment

An agent isimplemented in a pair of ways Aglets[1] and
Telescript [16]. Relational database systems Sybase [4] and
Oracle8i [5] on Solaris, Linux, and Windows2000 are used
as object servers which are interconnected in al0Obase Eth-
ernet. Each object server supports an XA interface [11] for
the two-phase commitment.

An agent manipulates table objects in object servers by
issuing SQL [9] commands, select and update. A mobile
agent realized in Telescript can carry the state to other object
serversi.e. process of agent is migrated. However, Aglets
agent cannot bring the state to other object servers, just text
and heap area are transferred.

An object server isrealized in an Oracle and Sybase object
server. JDBC(Java database connectivity) [2] is used to real-
ize a program interface to an object server. The JDBC class
is required to be loaded to an Aglet agent in order for the
agent to issue SQLs on an object server. A home computer
of an agent means a computer where the agent is initiated.
In order to perform an agent on an object, JDBC is required
to exist on the home computer or the server. If JDBC does
not exist on the server, JDBC on the home computer istrans-
fered to the server. It takesabout 10 sec. to transfer and load
JDBC on 100-base LAN. In the Internet, it takes about 34
sec. to transfer the JDBC class between Saitama and Kana-
gawa. Some object server may not support JDBC. Each type
of object server, i.e. Oracle and Sybase, requires an agent
to use its own type of JDBC. Hence, an agent cannot move
to an object server if the object server does not support its
JDBC and the home computer does not other. Next, suppose
the home computer supports JDBC. An agent moves to one
of object servers D, and D,. Here, D, has JDBC but D,
does not. If the agent moves to Do, it takes a large time
than D;. Thus, it is an important decision factor of a route
whether an object server support JDBC or not.

/\ :JDBC home server
O : agent O O O
8 : server /\ - 8
—> : movement

:> . load O

O—0
: home computer g A@

Figure 6. Agent on JDBC.

5.2. Surrogates

As presented before, after an agent leaves an object server,
asurrogate agent of the agent stays on the object server while

the surrogate agent holds objects manipulated by the agent.
The surrogate agent releases the object on time when the
agent commits or aborts. In this implementation, an agent
and its surrogates are realized as follows [Figure 7]. Here,
suppose an agent lands at an object sever D; by using SQL
with some consistency.

1. An agent A manipulates objects in an object server
D;.

2. A clone A’ of the agent A is created if the agent A
finishes manipulating objects in an object server D;.
The clone A’ leaves the object server D; for another
object server D;.

Thus, aclone of an agent A iscreated and movesto another
object server as an agent. The agent A isjust performed on
the object server D; and then is changed to the surrogate. If
an agent leaves the object server D;, locks on objects held
by the agent are released. Therefore, an agent stays on an
object server D; and a clone of the agent leaves the object
server D; for another object server D;.

If all the object servers required by the commitment condi-
tion are successfully manipulated, an agent makesadecision
on commit or abort by communicating with the surrogates as
discussed in this paper. If commit is decided by the commit-
ment condition, a surrogate commits on an object server D;.
Otherwise, a surogate aborts.

@ @ @

Figure 7. Creation of surrogate.

5.3. Commitment

In order to commit an agent, all or some of the surrogates
are required to commit depending on the commitment con-
dition. Each agent is also realized by using XA interface
[11] which supports the two-phase commit protocol [Fig-
ure 5.3]. Each surrogate issues prepare to a server on re-
ceipt of prepare from the agent. If prepare is successfully
performed, the surrogate sends a prepared message to the
agent. Here, the surrogate is referred to as committable.
Otherwise, the surrogate aborts after sending aborted to the
agent. The agent receives responses from the agents af-
ter sending prepare to the surrogates. On receipt of the
responses, the agent makes a decision on commit or abort
based on the termination condition. In the atomic condition,
the agent sends commit only if prepared is received from
every surrogate. The agent sends abort to al commitment
servers if aborted is received from at least one surrogate.
On receipt of abort, a committable surrogate aborts. In the

01710

研究会Temp
－171－

at-least-one condition, the agent sends commit to al com-
mittable servers only if prepared is received from at least

one server.
@ O : agent
XA : server
Interface ’
D;
Figure 8. XA interface.
agent
A A A
prepare
— X :abort
: commit
_aborted 4 preparea | ©
I
——— | commit
¢
time

Figure 9. Conditional commitment.

Next, we discuss how to support robustness against agent
failures. First, suppose asurrogate A; of an agent A isfaulty
and recovered. Suppose a surrogate A; is faulty after send-
ing prepared. On recovery of the committable surrogate,
the surrogate unilaterly commits if the surrogate is commit-
table in the at-least-one transaction condition. In the atomic
condition, the surrogate Ai asks the other surrogate if they
had committed.

6. Concluding Remarks

This paper discussed a mobile agent model for processing
transactions which manipulate multiple object servers. An
agent first moves to an object server and then manipulates
objects. The agent autonomously moves around the object
servers. If the agent conflicts with other agents in an object
server, the agent negotiates with the other agents. The nego-
tiation is done based on the commitment conditions, i.e. all-
or-nothing, at-least-one, majority, and (™) conditions, and
types of agents, i.e. ordered and unordered ones. We are
now evaluating our mobile agent-based transaction systems
for various types of applications.

References

[1] Adglets software development kit home.
http://www.trl.ibm.com/aglets/.
[2] Jdbc data access api. http://java.sun.com/products/jdbc/.

[3] The source for java (tm) technology. http://java.sun.comy/.

[4] Sybasesgl server. http://www.sybase.com/.

[5] Oracle8i conceptsvol. 1. Oracle Corporation, 1999. Release
8.15.

[6] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
control and recovery in database systems. |n Addison Wesley,
1987.

[7] H. GarciaMolinaand D. Barbara. How to assign votesin a
distributed system. Journal of ACM, 32(4):841-860, 1985.

[8] J. Gray and A. Reuter. Transaction processing : Conceptsand
techniques, 1993.

[9] A.N.S. Ingtitute. Database language sql, 1986.

[10] F H.Korth. Locking primitivesin adatabase system. Journal
of ACM, 30(1):55-79, 1989.

[11] X. C. Ltd. X/open cae specification distributed transaction
processing: The xa specification., 1991. Document number
XO/CAE/91/300.

[12] F Mattern. Virtual time and global states of distributed sys-
tems, 1989. North-Holland, Amsterdam.

[13] A.Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf. Co-
ordination of internet agents, 2001.

[14] I. Shimojo, T. Tachikawa, and M. Takizawa. M-ary com-
mitment protocol with partially ordered domain. Proc. of
the 8th Int'l Conf. on Database and Expert Systems Appli-
cations(DEXA' 97), pages 397-408, 1997.

[15] D. Skeen. Nonblocking commitment protocols. Proc. of
ACM SIGMOD, pages 133-147, 1982.

[16] J. E. White. Telescript technology : The foundation for the
electronic marketplace, 1994.

01720

研究会Temp
－172－

