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Abstract

A dynamic energy performance scaling (DEPS)
framework has been proposed in previous work to ex-
plore application-specific energy-saving potential in
hard real-time embedded systems. The framework em-
ployed static algorithm to select the optimal DEPS
configuration off line because it assumed stable work-
load with worse case execution time (WCET) require-
ment. However, workload usually exhibits fluctuant in
practice due to data dependence, which results in early
completion over WCET. To take advantage of the run-
time slack for additional energy savings, a dynamic
algorithm is proposed for selecting the DEPS configu-
rations with less energy consumption on line. Through
a case study, its efficiency has been validated.

1 Introduction

Power consumption has become one of the major
concerns in today’s embedded system design. Reduc-
ing power consumption can extend battery lifetime of
portable systems, decrease chip cooling costs, as well
as increase system reliability. In contrast to the tradi-
tional hardware-centric low power designs, software-
centric energy performance tradeoff approach has at-
tracted much attention recently due to its flexibility
and easy implementation. This approach is based upon
the following observations: (1) Application needs for
particular hardware resources such as caches, issue
queues, and instruction fetch logic within an embed-
ded processor can vary significantly from application
to application and even within the different phases of
a given application [8]. Furthermore, program behav-
iors with respect to access of I/0 devices (e.g. exter-
nal memory) are also application-dependent. This fact
manifests the energy saving potential during the ex-
ecution of program by dynamically tuning hardware
resource, which corresponds to different power con-
sumption. (2) In real-time systems the utilization of
processor is always less than 100% even if all tasks
run at worse case execution time (WCET). Moreover,
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the actual workload even for the same task may vary
from instance to instance, which depends on the spe-
cific input data and execution path. The fact of existing
slack in real-time system reveals the chance to tradeoff
performance for energy since the highest performance
is not always required if the deadline can be met. To
take advantage of this application-specific potential for
energy savings, software-centric approach attempts to
select the optimal DEPS configurations for different
applications or different program phases to minimize
total energy consumption while meeting the deadline
constraints simultaneously.

There are two kinds of commonly used power con-
trol technologies for energy and performance trade-
off. One is dynamic hardware resource configura-
tion (DHRC), such as adaptive-issue queue [13], adap-
tive branch prediction [10], selective cache way [11]
etc.. This technology tries to improve processor en-
ergy efficiency by dynamically tuning major proces-
sor resources in accordance with varied needs of ap-
plications [8]. However, its effectiveness on specific
application is difficult to predict for two reasons. (1)
DHRC is application-dependent, i.¢., a specific DHRC
technique may be effective for some applications, but
may be ineffective for other ones [9]. (2) Even for a
DHRC-effective application, the specific energy and
performance relation for different hardware configura-
tion is also difficult to predict. The second technol-
ogy for energy performance tradeoff is dynamic volt-
age frequency scaling (DVFS) [1, 2, 3, 4, 5, 6, 7].
Because the dynamic power consumption of CMOS
circuits is proportional to its clock frequency and its
voltage square, DVFS saves energy by lowering both
frequency and voltage of processor subject to deadline
constraint, Unlike DHRC, DVFS generally has similar
effectiveness on different applications. That is, lower-
ing frequency and voltage in a range always leads to
longer execution time and less energy consumption.
Moreover, the variation of execution time and energy
consumption can be estimated by simple calculations.
For example, most DVFS algorithms assume that the
energy is proportional to the square of the supply volt-
age and the execution time is inversely proportional to
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Figure 1. DEPS framework

clock frequency.

Although these existing technologies are very ef-
fective for energy and performance tradeoff alone, un-
fortunately, combining them to achieve more energy
savings is not a trivial problem. The reasons are that
(1) while the energy consumption and execution time
can be predicted by calculation after voltage/frequency
scaling; they cannot be done so after hardware con-
figuration is changed. Thus to guarantee deadline for
DHRC application, the only way to obtain the energy
time relation is measurement. (2) As a general energy
performance tradeoff technology, DVFS can be effec-
tively applied to various applications. On the contrary,
one kind of hardware resource configuration may be
effective for some applications, but may be useless for
other applications. Thus a framework should have the
capability to accommodate different hardware config-
uration mechanisms.

In [23], a dynamic energy performance scaling
(DEPS) framework has been proposed for energy sav-
ings by combining the above two power control tech-
nologies. The framework employed static algorithm to
select the optimal DEPS configuration off line. While
the static scheme is effective for stable workload with
WCET requirement, it cannot deal with variable work-
load to further save energy. In practice, embedded sys-
tems often exhibit fluctuant workload due to data de-
pendence of program behaviors. In the case of early
completion of task, dynamic slack can be employed to
further save energy. To this end, we propose dynamic
scheme of DEPS for additional energy savings by re-
claiming runtime slack.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the DEPS framework. Section 3
presents the proposed dynamic scheme of DEPS. Sec-
tion 4 gives a case study and related results. Finally,
Section 5 summarizes the paper.

2 DEPS Framework

The entire DEPS framework includes three layers,
i.e., power controllable hardware, power aware sofi-
ware, and power analysis tools. Figure 1 shows the
framework and interactions between three layers. As
software-centric approach, the DEPS engine is imple-
mented in the scheduler of OS. The power analysis
tools are employed to analyze and extract the power
relative information to assist the selection of candi-
date DEPS configurations which have higher energy
efficiency than other configurations. The power mea-
surement tool then is employed to obtain the specific
energy time relations under each selected configura-
tion. By this way, the measurement time can be re-
duced to some content. In addition, power analysis
tools can insert power control hints into program to
support fine-grained energy saving algorithm. Mean-
while, the power controllable hardware is also crucial
for the DEPS framework. Generally, the more power
controllable mechanisms the hardware provides, the
more energy savings potential there is. However, for
specific applications the effective mechanism may be
different, and the overhead for power control should
also be considered. Note that the framework can sup-
port both inter-task and intra-task based applications
with coarse or fine granularity, although we only con-
sider the inter-task and task-level application in this
work.

2.1 System Model

This work focuses on embedded system and as-
sumes 2 DHRC and DVFS enabled embedded proces-
sor. The DVFS is assumed to operate at a finite set of
supply voltage levels, each with an associated speed,
as seen in most commercial processors.

‘We consider hard real-time applications including
a set of independent n periodic real-time tasks, rep-
resented as I' = {7,72,...,7,}. Each task 7 has
a period F; and relative deadline D; that is equal to
P;. A task ; has m; effective DEPS configurations
Ci1, Cia, ..., Cim, consisting of both DHRC configu-
ration and DVFS parameters. Each DEPS configura-
tion Cj; is associated with a specific energy time (per-
formance) relation, which can be represented by a pair
of values (T%;, E;;) where T;; is its worst-case execu-
tion time under this DEPS configuration, and E;; is its
energy consumption corresponding to the T5;.

Note that we utilize measurement to obtain this
application-specific energy time relation under se-
lected DEPS configuration. There are two reasons
for this. First, as described in Section 1, the energy
consumption and execution time of program is diffi-
cult to predict under different DEPS configurations.
Second, while most DVFS papers use calculation for



prediction after voltage/frequency scaling, recent re-
search shows application-specific energy time relation
through actual measurements, which can be exploited
to further save energy over normal DVFS application
[4, 5]. These application-specific power characteristics
comprise external memory or other 1/O devices access
behaviors as well as leakage power consumption, etc.,
which are generally neglected in simple calculation.

2.2 Static scheme of DEPS

Static scheme of DEPS has been proposed in [23]
where the problem of selecting the optimal DEPS con-
figuration for each task to achieve the maximal energy
savings and meet the deadline constraints has been for-
mulized as a typically multiple choice 0/1 knapsack
problem. The static scheme solves this problem off
line using common method. Note that the optimization
can only be guaranteed when the workload is constant
with WCET. More detailed descriptions about the im-
plementation of static scheme can be found in [23].

3 Dynamic Scheme of DEPS

Some dynamic DVFS algorithms have been pro-
posed in literatures to reclaim dynamic slack, they
however cannot be directly applied to DEPS due to
the difference between them. The key difference is that
while most existing DVFS algorithms assume constant
number of cycles for each task even if voltage and fre-
quency have been changed during the execution of task
[1, 2,3, 20], this assumption is not held for DEPS any-
more. It is evident that when DEPS configuration is
changed such as cache size, branch prediction etc., the
number of cycles for task execution is changed also.
As a result, the left execution time for task cannot
be predicted exactly when its DEPS configuration is
changed during execution, which may lead to miss of
deadline. In fact, even if only changing the voltage and
frequency, the number of cycles is also changed due
to the variation of cycles required for external mem-
ory access. A recent paper solves this problem by
distinguishing the total workload as on-chip, off-chip,
frequency-dependent, and frequency-independent, re-
spectively [21]. However, it is impracticable to assume
knowing the left each portion of workload during the
execution of task. For this reason, our algorithm main-
tains the same DEPS configuration for each task dur-
ing its entire execution. That is, even if the preempted
task gets the slack from higher priority task, it cannot
reclaim the slack to change its DEPS configuration.
To guarantee the deadline, we impose this strong con-
straint on the algorithm at the cost of lost chance for
energy savings. Figure 2 summarizes the definitions
and notations used in the algorithm. As an example
of notations, Fig.3 shows their relative time relation.

m Assume task; has been completed before dispatching task;
= NTA: earliest arrival time of next task from current dispatch
time of task; (t)
= Actual execution time (AET) of task measured by OS
m  Definition of dynamic slack
O Total slack: early completion of task than WCET
= Total Slack = WCET, — AET;;

O Useable slack: slack time can be used by next task
= Useable Slack = Total Slack - CPU idle time;

= Effective execution time for task; when useable slack exists
0O EET, = WCET, + Slack ;

Figure 2. Definitions and notations.
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Figure 3. Relative time relations of nota-
tions.

In brief, the dynamic algorithm includes two steps,
i.e., off-line step and on-line step as shown in Fig. 4.
The detailed on-line slack reclaiming algorithm is also
listed in this figure. The basic rules for this algorithm
are as follows. (1) The default configuration is ob-
tained using static scheme where the schedulability is
guaranteed even for the WCET. (2) Only the slack gen-
erated by high priority task can be used by low priority
task. (3) If only one task in the ready queue, the NTA
time can be used for this task. As proved in [3, 20],
these rules can guarantee the schedulability of algo-
rithm. ‘

As an example, Table 1 shows the DEPS configu-
ration table of v42 benchmark. In practice, this table
only contains two columns, i.e., hardware configura-
tion parameters and associated WCET. Note that the
first entry should be the optimal static DEPS configu-
ration obtained as described in [23], the other entries
are the effective configurations that are sorted as in-
creasing WCET or decreasing energy. As can be seen,
with increased execution time, the energy consump-
tion is decreased. Dynamic scheme therefore attempts
to find new DEPS configuration with less energy by
absorbing dynamic slack. For example, when v42 task
obtains a 20ms slack form higher priority task, then it
can update its current DEPS configuration to 2 which
consumes less energy than configuration one.

4 A Case Study

As mentioned earlier, since DEPS can adopt di-
verse DHRC and DVFS techniques, the achievable en-
ergy savings of DEPS are highly dependent on the em-



m Dynamic scheme of DEPS
O STEP 1: static (off-line) optimal algorithm
» Off-line implementation to obtain the static optimal DEPS
configuration for each task
» Construct the DEPS config. table for each task using the
optimal and candidate DEPS configurations
01 STEP 2: dynamic (on-line} slack reclaiming algorithm
= Implemented by OS scheduler when task is completed, or
dispatched
m Dynamic (on -line) slack reclaiming algorithm
O Completion of task;
u slack = EET, - AET,; // total slack
O Dispatch task; at time t

w EET; = WCET, ; /f WCET of task; under static optimal DEPS configuration

= if only one task in the ready queue and NTA > t + WCET,
o EETj=NTA-;
= If the priority of task; is higher than that of task;
o slack = slack — CPU idle time; // useable slack
o if slack < 0, then slack=0;
0 if WCET, + slack > EET, then EET; = WCET; + slack

» If EET; > WCET; then search DEPS config. table to find new config.

WCET;* such that WCET; is the largest one but <= EET,
o WCET; = WCET;
o Configure the processor hardware as the updated DEPS config.

Figure 4. Algorithm in dynamic scheme.

Table 1. DEPS configuration table of v42.

| No. | Hardware configuration parameters | WCET (ms) | Energy (mJ) I

1 220MHz/1.8V; EBP; 8k T cache - 45.06 1146
2 160MHz/1.6V; EBP; 8k [ cache 60.17 9.22
3 100MHz/1.4V; EBP; 8k T cache 95.42 749

ployed DHRC and DVFS. Therefore, it is difficult to
evaluate the exact energy savings of general DEPS.
For this reason, we use a case study to demonstrate the
cffectiveness of DEPS. In this case study, we choose
a 4-level voltage processor for DVFS and the selective
cache way (SCW) [11], configurable branch predictor
(CBP) for DHRC in the DEPS framework. In [3], it is
shown that limited voltage/frequency levels will result
in less energy savings for DVFES applications. How-
ever, while most general-purpose commercial DVFS
processors can provide more voltage levels, embedded
processors typically have less ones due to its relatively
Jow rumning frequency. For example, the evaluation
board of TMS320C5509 only provides 3-voltage lev-
els [19]. The reason for selecting SCW and CBP is
due to their easy implementation and low configura-
tion overhead. The detailed implementations of SCW
and configuration overhead can be found in [11, 12].
Note that our DEPS framework is general and inde-
pendent on the employed DHRC and DVFS technolo-
gies. We simple choose the above technologies as an
example of DEPS.

Table 2. SimpleScalar/ARM configura-
tion.

Fetch queue 2
Branch Predictor configurable
Feich, Decode width i
Issue width 1 (in-order)
Functional units 1int ALU, 1 int Multiplier

1 FP ALU, 1 FP Multiplier
Selective cache way (SCW)

Tnstruction L1 Cache

Data L1 Cache Size 8KB; sets 64
block size 32-byte; 4-way
L2 Cache None
Memory bus width 4-byte

Table 3. Branch prediction configuration.

Enable Branch Prediction (EBP) | Bimodal 2K entries; 3 cycle penalty

Disable Branch Prediction (DBP) Not-taken; 3 cycle penalty

4.1 Simulation Environment Setup

As we focus on embedded systems, a Sim-
pleScalar/ARM [14] based power simulator, Sim-
Panalyzer [15], is employed to measure the energy and
time in our experiments. Sim-Panalyzer is an infras-
tructure for microarchitectural power simulation con-
sidering both dynamic and leakage power. The ARM
configuration for SimpleScalar is listed in Table 2. The
configurations of branch predictor are denoted in Ta-
ble 3. Note that we only implement the SCW on in-
struction cache to avoid large configuration overhead
for keeping data coherence. The possible configura-
tions for L1 instruction cache are summarized in Table
4. In addition to the above configurations for Sim-
pleScalar, Sim-Panalyzer retains its default configu-
ration. Furthermore, we incorporate DVFS capabil-
ity into the Sim-Panalyzer as shown in Table 5. For
simplicity, we assume zero power consumption of pro-
cessor during idle state of OS. Actually, the idle power
can be considered as constant when using the proposed
accurate DPM method in [22]. Some benchmark pro-
grams from Mibench [16], Mediabench [17] and Pow-
erstone [18] are used for this evaluation. A synthetic
task set consisting of these benchmark programs is
assumed to run on this ARM simulator using fixed-
priority scheduling with specified periods as given in
Table 6. The DEPS results using static scheme are de-
noted in Table 7 which will be utilized as the default
configurations in the dynamic scheme.



Table 4. SCW configurations for L1
lcache.

Parameters l cfg 1 | cfg2 | cfg3 |
Cache size (KB) 8 4 2
Num. of sets 64 64 64
Block size 32 32 32
Associativity 4 2 1
Replacement policy | LRU | LRU | LRU

Table 5. DVFS parameters.
Processor frequency (MHz) | 280 | 220 | 160 | 100
Processor voltage (V) 20 1.8 1.6 14

4.2 Simulation Results of Dynamic
Scheme of DEPS

Instead of assuming stable WCET workload in
static scheme, workload is assumed to be varied from
20 to 100 percent of the WCET in dynamic scheme.
To calculate energy consumption, we assume that the
average power maintains constant for each DEPS con-
figuration even if the actual execution time is variable.
The results of static scheme are utilized as the default
configurations, and other effective configurations with
less energy are employed to construct the DEPS con-
figuration table which is similar to the Table 1. We
build an evaluation environment to simulate the exe-
cution and fixed-priority scheduling of tasks as well as
the proposed dynamic scheme as described in Fig.4.
To evaluate the maximal potential for energy savings
we also implement a oracle algorithm in the experi-
ment. We assume that the oracle algorithm knows the
precise execution time for each task instance in ad-
vance. Obviously, this assumption is unrealistic and
it is only used for the evaluation. The experimental
results are given in Fig.5. From these results, we can
obtain the following observations.

e Dynamic algorithm always achieves less energy
consumption than static algorithm if task com-
pletes early than WCET.

o Generally, the more dynamic slacks in the sys-
tem, the more energy savings potential there is.

e The oracle algorithm indicate the maximal theo-
retical possibility for energy savings in the sys-
tems although it is impossible in practice.

Specifically, dynamic algorithm shows the maximal
4.7% improvement over static algorithm, and oracle
algorithm shows the maximal 6% improvement than

Table 6. Synthetic task set.

Task Period WCET(ms) at Total
pame (mos) 280MHz HRC cfg.1 CPU uti.
sha 400 64.9
v42 200 36.7
engine 100 8.7 93.6%
g3fax 100 15.6
cjpeg 400 95.2
tiff2rgba 3200 435.2

Table 7. DEPS results of static scheme.

Task name || DEPS results: energy = 994.8 mJ
HRC FIV

sha 2K T cache + EBP 280MHZz/2.0V

v42 8K I cache + EBP 220MHz/1.8V
engine 4K 1 cache + EBP 280MHz/2.0V
g3fax 2K T cache + EBP 280MHz/2.0V
cjpeg 4K T cache + EBP 280MHz/2.0V
tiff2rgba 4K I cache + DBP 280MHZ/2.0V

dynamic algorithm. Note that dynamic algorithm ac-
tually achieves decreased improvement than static al-
gorithm when the actual execution time of task is less
than 0.6 WCET. The reason is that the provided maxi-
mal energy scalability in DEPS framework determines
the possible maximal energy savings. For example, as
shown in Table 1, even if the v42 task obtains runtime
slack larger than 51 ms, it can only select the config-
uration 3, which indicates that it cannot achieve less
energy consumption than 7.49mJ even though there is
enough dynamic slack. Therefore, the larger energy
scalability the DEPS framework provides, the more
energy saving potential can be obtained in the dynamic
algorithm.

5 Conclusion

‘We proposed a dynamic scheme to improve the pre-
vious static scheme in the DEPS framework. The dy-
namic scheme targets at the fluctuant workload in em-
bedded systems to achieve additional energy savings.
To this end, it attempts to select the new DEPS config-
uration with less energy consumption on line:by con-
sidering the runtime slack. Through a case study, it
is validated that the dynamic scheme always achieves
less energy consumption than static scheme. More-
over, experimental results also suggest that to guaran-
tee the efficiency of dynamic scheme it is important
to provide sufficient energy scalability in the DEPS
framework.
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