By L RERR 3 -3
(1995. 9. 20

Analytic Modeling of
Cache Coherence Based Parallel Computers

Kazuki JOE and Akira FUKUDA

Graduate School of Information Science
Nara Institute of Science and Technology

Abstract

In this paper, we propose an analytic model using a semi-markov process for parallel computers which
support cache coherence mechanism by hardware. The proposed model, the Seini-markov Memory and Cache
coherence Interference Model, can be used for the performance predlctlon of cache coherence based parallel
computers since it can be eas)]y applied to descriptions of the waiting states for network contentions or memory
interferences of both normal data accesses and cache coherence requests. Conventional analytic models by
stochastic process for parallel computers have an unavoidable disadvantage of the explosions of the number
of states as the system size is enlarged even if they are for simple parallel computers without cache memory.
The number of states required by constructing our proposing analytic model, however, does not depend on the
system size but only on the kind of cache coherence protocol. For example, the number of states for the synapse
cache coherence protocol is only 19 as is described in this paper.

HE AT RWSETEROERET L
W E B

ML /L e FA YNGR I NG (VR LS e
J,'."l Wi 8 916—5

Abstract

X ¥ © AT BAFUAIAT AT RGBT A, I 7R E R L TWHTET L R YERT
s T}UP\ ﬂ/ SMCI (Semi-markov Memory and Cache coherence Interference) T7ILIL, ¥xv L a-dk—1L
¥ AWM S RMEDT =5 - VP LALD 3o b= Z RGP AR VRN L DI LINEE | BT a s
2y :4 4;@1\/1 S GIHIEIIE) L AT A, £, AR S X7 LA S AT
A—=S L LT DIEDTEDLI D, ’c’*iéi&/ZTAh';hk’E'h')\lf/é'llulfﬂﬁﬂ) Tf')‘z—:/qxs.&:d)‘i’lf"ﬁ‘
--l'fllll’i’ﬁ?/:ﬁ")uTﬂm T’Z)C_tﬁ"tﬁ o SALECO 7 W & R L 2SR oA L L WA) |
SMCI £7 V25T 53K '-ﬁﬁui‘ T ULy AR AT A — AN T, mth&&Tan)
TMLTOL*+ //1- TE=U 22 70k o TORNET L, (oT. SMCI €7 L O FHEIIEA
P22 A7 LAOBIEUZ A i 3 e,

1 Introduction

Parallel computers are becoming larger and more com-
plicated through results of research into such things as
cache coherence protocols [1], processor clustering schemes
[6], scalable shared memory mechanisms [7, 10}, etc.

To evaluate the performance of such large and com-
plicated parallel computer systems, one of the possi-
ble methodologies is simulation. However, simulating
a large, e.g. thousands of processors, parallel computer
system leads to another problem of the computational
cost. For example, we can not execute any simulation
program which simulates a parallel computer with 1,024
processors on a typical workstation.

Analytic modeling is widely known as a valid and inex-
pensive methodology for the evaluation of parallel com-
puter systems. The problem is that most of the previous
works on analytic modeling, which were mostly by using
of a markov chain {2, 8, 11] or queueing theory [9], do
not support parallel computers with cache memory.

Early work related to this research was done by Bhan-
darkar [2] of which markov chain based model was ap-
plied to a parallel computer to study the memory inter-
ference. The state definitions of his model were repre-
sented by tuples of the number of processors which were
issuing memory requests to corresponding memory mod-
ules. The problem of his model laid in the explosions of
the number of states as the system size is enlarged.

Marsan proposed a simplification of the similar kind
of analytic models by converting the exact markov chain
into a simple birth-death process. The number of the
states was reduced to the same number of processors [8].
Furthermore, Mudge proposed more simplified approac
to the similar kind of model by using of a semi-markov
process. Finally the number of the states reached to only
4 [12]. These methodologies, however, have not been
applied to analytic modeling of cache coherence bhased
parallel computers because they are too complicated to
keep the number of their states small.

Using stochastic models, some work focused on the
cache coherence mechanism [15] but did not support the
network contention nor the memory interference that
took place in parallel computers. Besides stochastic mod-
els, queueing network models with the MVA method
have been investigated for the performance prediction
of parallel computers with cache memory [14]. Although
the MVA method based analytic model is another recent
trend [5, 3], we have interests in exploring the stochastic
model based methodology.

In this paper, the Semi-markov Memory and Cache co-
herence Interference (SMCI) model is proposed, which
can analyze the cache coherence mechanism as well as
for the network contention and the memory interference
both for data and cache management requests of cache
coherence based parallel computers. The advantage of
our proposing model is its small number of the sates.
When the SMCI model is applied to a parallel computer
with thousand of processors which supports cache coher-
ence mechanism by the synapse protocol [1], the number
of states is only 19.

The structure of this paper is as follows. The assump-
tions for the SMCI model of the whole system, the defini-
tion of various processor requests and the caching prob-
ability of a shared block are described in Sect.2. Actual
states and internal variables are defined and the method
for calculating the model is shown in Sect.3.

2 Preliminary

2.1 The Policy of Modeling

Previous work for modeling a parallel computer with-
out cache memory was done by investigating a proces-
sor's state transition, assuming that there were multiple
identical state transitions, and constructing the whole
system model. However it is difficult to construct a
model of a parallel computer with cache memory allow-
ing for the cache coherence mechanism because the state
transition of the whole system can be affected by some
behavior of a single processor. When a processor makes,
for example, a write request during a system cycle, the
behavior of the whole system may be determined by the
state of the requested data block. If no other cache holds
a copy of the requested data block, the request is typi-
cally a write miss. If some cache holds a copy of it as
clean, the request causes the cache to issue an invali-
dation. If a copy of the requested data block is in the
local cache and already has been modified, the request is
simply a write hit. Thus to model the whole system, in-
cluding such events, it is necessary to predict each state
of a shared block in each system cycle, some caches hold
a copy of the block or not, whether the held copy is clean
or not, etc.

In this paper we start from the cache miss rate of
shared blocks derived from Wang’s model {15]. Using the
miss rate, we approximate the prediction of the states of
a shared block and define the state of a processor un-
der this prediction with a semi-markov process (SMP.
See [13]). Then, we formulate the relation between the
limiting probabilities of the state of a processor and the
processor request rate. Given an initial value to the pro-
cessor request rate, the limiting probabilities can be cal-
culated. Based on them, the processor request rate is
updated. Repeating these calculations, we can find a
convergent point for the request rate which indicates the
steady states of the system. The effectiveness of the
SMCI model is demonstrated by comparing its results
with the simulation results of [1]. The results show that
there are only 8.0% differences between the actual simu-
lation and our analytic model while our analytic model
can predict the performance of a 1,024 processor system
in the order of micro second. We do not describe these
results in this paper because of a lack of space.

2.2 The Assumption of the Model

The target parallel computer consists of several pro-
cessors, their own private cache and memory modules
connected by a single shared bus network. The cache
coherence mechanism with the Synapse protocol ! [1]
is supported by hardware. The reason of adopting this
protocol is its small number of states. Also the bus net-
work is required to compare with the simulation results.
We would like to remark that the SMCI model can be
easily applied to other networks including multi-stage
networks. See our another work [41.

To simplify the analytic model, the following assump-
tions are introduced:

1. The behavior of the processors can be modeled as

identical stochastic processes.

! Although Synapse protocol uses INVALID, VALID, DIRTY
as the state of blocks, we will use Invalid, Clean, Dirty for the rest
of this paper. The reason is historical one. Actually Clean is the
same to VALID.

2. The duration of the data request (except cache co-
herence control requests) is an independent, ge-
ometrically distributed discrete random variable
with mean A. And the request service times are
given determinately by a architecture specification.

3. The running program is in a steady state; the ini-
tial paging for loading or the initial poor cache hit
rate are not considered. But the replacement of a
cache block when a cache entry is full is considered.

Assumptions (1) and (2) are necessary to construct
the analytic model. Assumption (3) is derived from our
use of the limiting probability in Sect.2.3

2.3 A Semi-Markov Process

In this paper an SMP is a discrete stochastic process
which consists of K states. In state ¢, it sojourns for the
period given by the time distribution function Fj;(t) and
makes a transition to state j with probability p;;. The
average sojourn time 7; is expressed as below.

K 00
= ZP.‘,‘ Z taFii(tn)
j=1 n=0

If an SMP has an ergodic irreducible embedded markov
chain (EMC), the limiting probability of state ¢ can be
formulated as below.

(1)

i
K
2_,‘:1 LEL

where {m;} is the limiting probability of an EMC. The
model described in this paper consists of one ergodic
EMC, so Eq.(2) is available.

P, = (2)

2.4 The Definitions of the Various Re-
quest Rates

In a parallel computer the request rate from a proces-
sor is determined when it runs. It should consist of the
original request rate from the given program and the re-
issued request rate from processor waiting states because
of network contentions. To construct an analytic model
for a cache coherence based parallel computer, we give
new definitions for four various request rates: Normal
request rate ¢, ,.mat is the rate that a processor issues
a request just after its computation state. Memory re-
quest rate @,.mory is the rate that a processor issues a
request to some data in actual memory and is defined as
(normal request rate) x (cache miss rate) + (the same
request rate from its waiting state). Coherence re-
quest rate Qcoherence i1s @ sum of the request rate for
cache coherence control and the same request rate from
its waiting state. Network request rate @n.iwork is
the rate that a processor issues to the network from any
states and is defined as (memory request rate) + (coher-
ence request rate).

In this paper each request rate is a rate of requests in
a network cycle time.

2.5 The Caching Probability of a Shared
Block

To know whether a request from a processor causes the
processor Lo issue cache coherence control requests, we
need to predict if the requested shared block is cached
by another cache. If the number of cached shared blocks
in a cache is L, and the total number of shared blocks
iz .?'9, the prediction can be defined as the probability of

We use S as an input parameter for the SMCI model.
Before obtaining L, we must determine the cache hit
rate, H, for shared blocks. As described in Sect.2.1, we
use the result (bellow equation) of [15] as an approxi-
mation where the cache miss rate for Synapse protocol
is given.

1 PP -1)(1~T7) 3)
Is(P-r)(1+(P-1)(1-71))

where P is the number of processors, r is the read
request rate, and [s is the access burst length {15]. The
access burst length depends on program model.

We can not obtain the number of cached shared blocks
in a cache by simply multiplying the total number of
shared blocks and H since the access pattern for shared
blocks is not always uniformly distributed. In this paper
we use Archibald’s assumption [1] as the access pattern.
The probability that a shared block i lS in ith entry of the
LRU stack is 8’1/ 5+1i)—1/(6+1))g [1] where gisa
normalizing coefﬁc:ent Therefore we can obtain L by
the following equation.

H=1-

dx
6+:) =H
dz

L 1
Jo 95z -
s
J; 9(511
After some simplification, we obtain L as follows.
H
5 (8(5+S)
_ 65 (5(s+s)) -5

l_a(z@_w)"

6 \5(6+5)

(4)

6+2)

3 The SMCI Model

3.1 The Definition of the States

To construct the SMCI model, we first define each
state for an SMP. Table 1 shows definitions of the actions
of a processor to its cache, memory and network. This
state definition is based on the Synapse protocol.

3.2 The State Transitions

Figure 1 shows the transitions between the defined
states. A state transition occurs when any kinds of re-
quest (including requests due to cache memory accesses)
is issued. In this figure, h represents the cache hit rate for
private blocks, H represents the cache hit rate for shared
blocks, r represents the read request rate to read/write
requests, d represents the probability that the requested
block is dirty, c represents the probability that the re-
quested block is not dirty , w represents the probability
that the request is not accepted, u represents the ac-
cess rate for shared blocks to all blocks, = represents the
probability that the cache has already been exhausted,

& 1: State Definitions in the SMCI Model
OM

COMputation

Rh Reading from cache (Read hit)

Wh Writing to cache (Write hit)

WhIV | Invalidation caused by Wh
(Wh-InValidate)

WhIV | The waiting state for WhIV

Rc Cache miss read from non dirfy block
(Read clean)

Re The waiting state for Re

Rd Cache miss read from dirty block
(Read dirty)

Rd The waiting state for Rd

Wc Cache miss write to non dirty block
(Write clean)

We The waiting state for We

WcIV | Invalidation cause by Wc
(Wec- InValidate)

WeclV | The waiting state for WelV

wWd Cache miss write to dirty block
(Write dirty)

Wd The waiting state for Wd

WB Writeback caused by an invalidation
{(WriteBack)

WB The waiting state for WB

RP ‘Writeback caused by block replacement
(RePlace)

RP The waiting state for RP

m represents the probability that the replacing block has
been modified, and y represents the rate of data requests
to all requests (including writeback requests) from the
COM state.

COM state changes only when requests occur. It
changes to WB, WB, Rh, Re, Rd, Rc, Rd, Wh, We,
Wd, Wc and Wd, depending on whether the requests
are for writeback caused by invalidations, whether the
request is read or write, whether a cache hit occurs,
whether the addressed block is dirly, or whether the net-
work is busy respectively.

Rh, WhIV, RP and W B change only to COM. Wh
changes to WhIV or WhIV depending on the traffic
when the addressed block is not dirty . When the block
is dirty, it changes to COM.

Rc changes to COM when there are invalid blocks
in the cache. Even if there is no invalid block, when
the replace candidate is not dirty, the processor does
not use network. So Rc can change to COM directly.
When there is no invalid block and the replace candidate
is dirty, Rc changes to RP or RP depending on the
network traffic to writeback the replaced block. Rd, Wd
and WclV changes the same as from Rc. We changes
to WelV or WelV depending on the network traffic to
issue the invalidation request.

RP and WB changes to WhIV, Re, Rd, We, WclV,
Wd, RP and W B respectively or changes to themselves
depending on network traffic.

In Fig.1, al = y(h(1 — u) + Hu)r gives the probability
that COM changes to Rh. The derivation is as follow-
ings: When a request occurs in COM, it must be a data

{aby(h(1-uk+H ulr, ad=y(h(-ubeb wh 1-n), ad=y((1-hH -u s 1-Hht-G0rtl-w),
Lady (1N - - Hhu(Edhrw, aS=y(1-Hiurd(1-w) , 26=(1-Hiurdw , H
1aT=yl1-hy(1-ub 1-Hiaf 1A -} 1-w), aB= vl --BN 1) 1-Hiu(1A d-rw,
sas=y(1-Hul1-rid(1-) , alb=y1-Hull-ridw ,al 1=1-c,, al2=c(1-w) ,al3=cw, N
ald=1-w alf=w aléel-m, alToms(1-w), 218=maw , alS=(1-yN1-w), alfef1-)w |

[¥] 1: The state transition graph of an SMP based on
Synapse protocol.

request (with rate y) or a writeback request (with rate
1 —y). If it is a data request, it must be a read request
(with probability 7) or a write request (with probability
1 — 7). If it is read one, the request must be satisfied at
the cache. When the request is bound for private blocks
(with probability 1 —u), the private block cache hit rate
is h. Otherwise it must be bound for shared blocks (with
probability u) and the shared block cache hit rate is H.
Thus we obtain al = yf(h 1—u)+ Hu)r. We do not ex-
plain other elements of the state transition probability
because of lack of space.

3.3 The Construction of an SMP

Before constructing an SMP, the distributions of so-
journ time for each state of a processor are required. The
states of a processor can be classified into three groups
with regard to the distributions of their sojourn time:
1) the computation state, 2) the request service states
for cache or memory, and 3) the waiting states. As de-
scribed in Sect.2.2, we assume that the sojourn time for
computation is geometrically distributed with parameter
A. Also the sojourn time for the request service states is
determinately given by the below function Fj;().

1 if t > The access time of state ¢
0 otherwise

Fi(t) = { (®)

For example, the access time for a cache read, mem-
ory read and invalidation is 1, 16 and 4 respectively.
These values are from specifications of target architec-
tures. Furthermore, we assume that the sojourn time
for the waiting states is geometrically distributed with
parameter Wt where the average waiting time, Wt, is
given latter.

The stochastic process X = {X,]}, defined by the
above state space and transition probabilities represents
the behavior of a processor. It is trivial that X is a
markov chain because of assumptions in Sect.2.2. The

sojourn time of each state of X is given by the above
time distributions. Considering each sojourn time as a
random variable sequeces T = {T,,}22,, the stochastic
process (X,T') = {X,, Tn}32, constructs an SMP.

It is obvious from Fig.1 that the EMC X of the SMP
(X, T) is ergodic. Thus we can use Eq.(2) to get the
limiting probability. As described in Sect.2.1, we start
from an appropriate initial request rate, obtain the lim-
iting probabilities, update the request rate, obtain the
limiting probabilities and repeat these calculations until
the request rate is saturated. Thus we oftain the steady
states of the system.

3.4 The Derivations of Variables used in
the SMICI Model

To evaluate the SMCI model, some appropriate input
parameters are needed. They are h, v, », P, S and m,
which are the same ones as in Archibald’s simulation.
Also each sojourn time for the computation and request
service states is given as input parameters.

The aim of this subsection is to define the internal
variables by input parameters. The internal variables
are ¢, d, T, w, ¢; (several reuqest rates) and sojourn
time for the waiting state Wt. Notice that H and L are
given by Eq.(3) and (5) respectively.

The probability, ¢, indicates whether an invalidation
request is issued when a write hit occurs. The invalida-
tion should be issued when the requested block is a shard
block with the clean state or when it is not a shared block
which has not been modified yet. Thus ¢ is given below.

P-1
c:(l——u)umd+u<l——(l—%)) (7

Since L/S represents the probability that a shared block
is in a cache and it was caused by a read request, (1 —
L/S)P~! represents the probability that there are no
shared blocks, which was caused by read requests, in
other P —1 caches. umd is the probability that a private
block in a cache has not been modified yet, and is given
by umd =1 — (1 — h)(m + 7 — 1)/((1 — 7)h), of which
derivation is from [1].

The probability, d, that another cache contains the
dirty shared block is:

L(1-r)\"?

d:(P—-l)L(ls_) (1 S

The probability, z, that there are no cache entries
when a cache miss occurs is obtained by the following
procedure. z is also the probability that there is no in-
validation request when exhausting cache entries because
only invalidation makes a cache entry become empty.
Here, we assume that the empty cache entry exists in
a cycle only if an invalidation request was issued to the
cache at the just previous network cycle. Let inv be
the probability that a specific cache gets an invalidation
from another. Then the probability z is:

3 a(S, PYinv\ 7!
T = (1 — B)

where afS, P) is a function which predicts the average
number of invalidated blocks by an invalidation. This
function is, clearly, affected by the number of shared

(9)

blocks and processors but is difficult to formulate since
it should be derived from a given parallel program model.
In this paper, we do not focus on the formulation but use
an approximation for this function.

When a processor writes to a block in its cache, and
if there is at least one other cache which contains the
block as clean, the processor issues invalidations to those
caches. Thus, inv is:

(10)

The probability, w, that a processor falls into a wait-
ing state to issue a request to the network is thought
of as two cases: one is the case where the network is
busy; the other is if the processor loses the network
contention even if the network is not busy. In the for-
mer case, let Q@ = Q4 + Q. (Q4 = {Rc, Rd,Wc,Wd},
Q. = {WclV,WclV,WB, Rp}) be a set of states in
which a processor is issuing (data and coherence) re-
quests to the network. If the state of a processor is in Q,
the probability that it is acquiring the network and will
not leave the state in the next network cycle is (n; — 12}/7],-.
Therefore, the probability Busy that the network is busy
is:

v = 9onov-malu(1 ~rjc+ ‘pnm'malu(l - H)d

Busy=(P71)pa-p"? (11)

where § = Zieq(mvl)/m. In the latter case, the proba-

bility Win that a processor wins the network contention
is:

1

Win = (1= (1 - pnetwort)’) 5——
w))P‘Pnetwork

(12)

Since the probability that a request is accepted at the
cycle when there are issued requests is the reciprocal of
the number of issued requests at the cycle. Thus the
probability w that a processor falls into a waiting state
181

w = Busy + {1 — Busy)(1 — Win) (13)

The request rate ¢; can be obtained as follows. By
definitions, the normal request rate ¢normar is:

Peoum (14)
ncoMm

The memory request rate is equal to the sum of the
ratio of leaving from the COM state with a cache miss
and the ratio of leaving from the memory access waiting
states. As described previously, the waiting state is di-
vided in two cases; network contention and network busy
. Let us refer to the former as the full waiting state and
the latter as the residual waiting state. We assume that
the processor issues a request per each waiting and each
cycle in the full and residual waiting state respectively.
Thus the probability, wmemory, is:

Pnormal =

Pmemory = ((1 - u)(l - h) + u(l - H))‘Pnormal

+ Busy Y Pifn+(1- Busy) Y Py (15)
1EQa 1€EQa

As is in the case of the memory request rate, the co-
herence request rate is:

@eoherence = ((1 = r)e + (1 = H)d)Pnormat + m(1 —) Throughput-Oriented Multiprocessors,”

+ Busy Z P;/n; + (1 — Busy) Z P, (16)
i€Q. i€Q.

In the above expression, m(1 — i) represents the request
rate for writeback operations caused by invalidations.
Finally, the network request rate is:

(17)

Pretwork = Pmemory T Pcoherence

The definition of Wt is the average time until the net-
work is free, so Wt is:

Wt = Z P
i€Q
The rate, y, of data requests to all requests (including
writeback requests) from the COM state is:

(18)

Prormal

= — 19
4 Pnormal + m(l - I) ()

3.5 The Procedure to Calculate the SMCI
Model

To calculate the SMCI model, as described in subsec-
tion 2.1, we should start from appropriate initial values
to get to a convergent point with regard to the network
request rate. They should be as follows: Ynormat = 1/A,
S&;oherence =0, Yy = 1» T = 1’ w=1- (1 - ‘Pnormal)Py

4 Conclusion

In this paper we proposed a new analytic model, the
SMCI model, for cache coherence based parallel comput-
ers by using a semi-markov process. To construct the
SMCI model, we defined various processor request rates,
showed the method of calculating the caching probabil-
ity of a shared block through the shared block hit rate
and the total number of shared blocks and gave the state
definitions which can allow the same input parameters
as used in Archibald’s simulator. Thus the SMCI model
could treat the cache coherence request as well as normal
request with their waiting states, with considering cache
replacement.

The current problem of the SMCI model is that we
adopted rough approximation for the average number
of invalidated blocks when an invalidation is issued. It
should depend on parallel program models rather than
architecture models. Therefore, its better approximation
should be the future work.

SEXM

[1] Archibald, J. and Baer, J., ”Cache Coherence Proto-
cols: Evaluation Using a Multiprocessor Simulation
Model,” ACM Trans. on Computer Syst., vol.4, no.4,
pp.273-298, 1986.

[2] Bhandarkar, D.P., ” Analysis of memory interference
in multiprocessors,” IEEE Trans. Comput., vol.24,
no.9, pp.897-908, 1975.

[3] Chiang, M. and Sohi, G., "Experience with Mean
Value Analysis Models for Evaluating Shared Bus,
in Proc.

ACM SIGMETRICS, pp.173-182, 1990.

Joe, K. and Fukuda, A., "An Analytic Model for a
Hierarchical Parallel System,” in Proc. the 2nd Int’l
workshop on Massive Parallelism: Hardware, Soft-
ware and Applications, pp.287-304, 1994.

[5] Jog, R., Vital, P.L. and Callister, J.R., "Performance
Evaluation of a Commercial Cache-Coherent Shared
Memory Multiprocessor,” in Proc. ACM SIGMET-
RICS, pp.173-182, 1990.

Kuck, D.J., Davidson, E.S., Lawrie, D.H. and
Sameh, A.H., "Parallel Supercomputing Today and
the Cedar Approach, Science,” vol.231, no.2, pp.967-
974, 1986.

Lenoski, D.E., ”THE DESIGN AND ANALYSIS OF
DASH: A SCALABLE DIRECTORY-BASED MUL-
TIPROCESSOR,” Stanford Univ. PhDthesis, CSL-
TR-92-507, 1992.

Marsan, M.A. and Gerla, M., "Markov Models for
Multiple Bus Multiprocessor Systems,” IEEE Trans.
Comput., vol.31, no.3, pp.239-248, 1982.

McCredie, J.W., "ANALYTIC MODELS AS AIDS
IN MULTIPROCESSOR DESIGN,” in Proc. Ann.
Princeton Conf. on Inf. Sci. and Sys., pp.186-191,
1973.

[10] Mori, S., Saito, H., Goshima, M., Yanagihara, M.,
Tanaka, T., Joe, K., Fraser, D., Nitta, H. and
Tomita, S., " A distributed shared memory multipro-
cessor: Asura - memory and cache architectures—,”
in Proc. Supercomputing 93, pp.740-749, 1993.

[11] Mudge, T.N. and Al-Sadoun, H.B., "Memory In-
terference Models with Variable Connection Time,”
IEEE Trans. Comput., vol.33, no.11, pp.1033-1038,
1984.

[12] Mudge, T.N. and Al-Sadoun, H.B., ” A semi-markov
model for the performance of multiple-bus systems,”
IEEE Trans. Comput., vol.34, no.10, pp.934-942,
1985.

[13] Osaki, S., Applied Stochastic System Modeling,
Springer-Verlag, 1992,

[14]) Vernon, M., Lazowska, E.D. and Zahorjan, J.,
"An Accurate and Efficient Performance Analy-
sis Technique for Multiprocessor Snooping Cache-
Consistency Protocols,” in Proc. ISCA, pp.308-315,
1988.

(4]

[6]

(7

8]

[o

{15] Wang, J. and Dubois, M., "Performance compari-
son of cache coherence protocols based on the access
burst model,” Computer Systems Science and Engi-
neering, vol.5, no.3, pp.147-158, 1990.

