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SUMMARY A graph G is called an n-channel graph at vertex r if there are n independent spanning trees
rooted at r. A graph G is called an n-channel graph if G is an n-channel graph at every vertex. Independent spanning
trees of a graph play an important role in fault-tolerant broadcasting in the graph. In this paper we show that if G;
is an ny-channel graph and G; is an nz-channel graph, then Gy x Gy is an (n; + ng)-channel graph. We prove this
fact by constructing n; + n; independent spanning trees of Gy X G5 from n; independent spanning trees of G; and

ny independent spanning trees of Ga.

1 Introduction

For a pair of graphs G; = (W, Ey) and G, = (V,, Ez), the
product of G; and G2, denoted by G x G, is a graph
with the vertex set V; x Vo = {(z,y) |z € Wi,y € V2} and
the edge set such that two vertices (uy,up) and (vy,vz)
are adjacent in G; X G if and only if either u; = v; and
Ugtig € Fy, or ug = vy and uyv; € E;. The definition of the
product of two graphs can be generalized to the product of
n graphs in the natural way. Gy x G2 x G is (G X G2) x G
or Gy x (G, x G3). Note that (G; x G2) x G3 and
G1 % (G2 x G3) are isomorphic. The product of n graphs
Gl XGzX“‘XGn is (Gl X"‘XGk)X(GlH.lX”')(Gn)
for some k (1< k<n-1), whereeach G; (1<i<n)is
called a component of G; x Gy X -+ X Gp,.

Some of popular interconnection networks are prod-
uct graphs. For example, the n-dimensional hypercube
Qnis Qo1 x Ko = Quog x K x Ky = -+« = Ay x
Ky x -+« x Ky, where K, is the complete graph of order
2. The (m; X --+ X my,)-meshis L, X -+ X L,,,, and the
(my X+ xmy)-torus is R, X -+ - X Rm,,, where L; and R;
are a linearly linked graph of order i and a ring of order z,
respectively. Denote the vertex connectivity of a graph G
by (G). Youssef [7] showed that for a pair of graphs G,
and Gz, I‘E(Gl X Gz) = K’.(Gl) + N(Gz).

A set of paths connecting a pair of vertices in a graph
are said to be internally disjoint if and only if any pair of
paths of the set have no common vertices and no common
edges except for their extreme vertices. Two spanning
trees of a graph G = (V, E) are said to be independent
if they are rooted at the same vertex, say r, and for each
vertex v in V, the two paths from r to v, one path in each
tree, are internally disjoint. A set of spanning trees of G
are said to be independent if they are pairwise indepen-
dent. A graph G is called an n-channel graph at vertex
r, if there are n independent spanning trees rooted at r of
G. If G is an n-channel graph at every vertex, G is called
an n-channel graph.

Itai and Rodeh [5] gave a linear time algorithm for
finding two independent spanning trees in a biconnected
graph. Cheriyan and Maheshwari [4] showed how to
find three independent spanning trees of G = (V,E) in
O(|V||E]|) time. Zehavi and Itai [8] also showed that for
any 3-connected graph G and any vertex r there are three
independent spanning trees rooted at r. They conjec-
tured that any s-vertex connected graph has x indepen-
dent spanning trees rooted at an arbitrary vertex r [6](8].
This conjecture is still open for any x > 3.

It has been shown that broadcasting along independent
spanning trees are efficient and reliable [2}{3][5]. In fact, if
G is an n-channel graph and the source vertex is not faulty,
then there exists a broadcasting scheme that tolerates up
to n—1 faults of crash type and up to |(n—1)/2| faults of
Byzantine type even in the worst case. All transmissions
by such a broadcasting scheme contribute to the majority
voting to obtain the correct message, and its communica-
tion complexity is optimal to tolerate up to |(n — 1)/2]
faults of Byzantine type [2][3].

In this paper we focus attention on the construction
of independent spanning trees of a given product graph.
This problem was discussed in [1], but they only showed a
weaker result than the main result in this paper. We show
that if G, is an ny-channel graph and G is an ny-channel
graph, then Gy x G; is an (n; + ng)-channel graph. We
construct n; + ny independent spanning trees of G1 X G
from n; independent spanning trees of G and n; inde-
pendent spanning trees of G. This construction is not
straightforward. From our construction we can say that
if for each component graph G; (1 < ¢ < n), the vertex
connectivity of G; coincides with the number of indepen-
dent spanning trees rooted at the same vertex of G;, then
the vertex connectivity and the number of independent
spanning trees rooted at the same vertex of Gy X +-- X G,
coincide.
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Figure 1: Examples of T,(va) * Tp and T * Ty (vs)

2 Spanning Trees of Product

Graphs

We first define an operation ”*” on spanning trees.
The set of vertices and the set of edges of a graph G are
denoted by V(G) and E(G), respectively. The cardinal-
ity of a set « is denoted by |a|. Let G, and Gp be two
graphs, rq be a vertex of Gg, and 1 be a vertex of Gg.
Let T, be a spanning tree rooted at rq of G4, and let T}
be a spanning tree rooted at rp of Gy. Assume that the
number of sons of r, in T, is k4, and let the set of sons
of r4 in T, be Cy = {sk,++,s5}. Let v, be a vertex in
Cy. For each i (1 < i < k), let Si be the subtree rooted
at s} of T,. We now construct a spanning tree rooted at
(ra,7s) of G4 X Gy, denoted by Ta(v,) * T, from T, and
T as follows:

(1) For each u in Cy, connect (rq,7s) with (u, 7).

(2) For each y1y2 € E(Tb), if u € C, then connect (u,y;)
with (u,y2).

() For each i (1 < & < k), if 2125 € E(S:) and y €
V(Gh) then connect (xy,y) with (z2,y).

(4) For each y € V(Gy) — {rs}, connect (rq,y) with
(vﬂay)'

Assume that the number of sons of r, in T} is kp, and
let the set of sons of ry in Ty be Cy = {s},-+,sf*}. Let
tp be a vertex in Cy. For each i (1 < i < ks), let Si
be the subtree rooted at s} of Ty. Symmetrically we can
construct T * Tp(vs).

Examples of Ty(v,) * Ty and T, * T,(vs) are shown in
Fig. 1.

To specify a path in G, X G} we use the following no-
tations. If 2122 is an edge of a subgraph T of G, then
path with length 1 from (z1,y) to (z2,y) is denoted by
{21,9) I (z2,y). The reflexive and transitive closure

of L is denoted by =, Alternatively, A =L» B means

that B follows from A by application of L, zero or more
times. Similarly, if y;y; is an edge of a subgraph T’ of Gy,
then path with length 1 from (z,11) to (z,y2) is denoted
by (z,y1) AN (2,y2). The reflexive and transitive closure
of =5 is denoted by i—,} .

We have the following four lemmas. The proofs of these
lemmas are omitted here due to the page limit.

Lemma 1 Let T, and T}, be a spanning tree rooted at r,
of G, and a spanning tree rooted at vy of Gy, respectively,
and let v, and vy be a son of rq in T, and a son of ry in
Ty, respectively. Then each of T,(ve) * Ty and Ty x Ty(vp)
is @ spanning tree rooted at (rq,7s) of Ga X Gs.

Lemma 2 Let T) and T> be independent spanning trees
rooted at rq of Gq, and let vy be a son of rq in T1 and vy
be a son of ro in Ty. Let Ty be a spanning tree rooted at ry
of Gy. Then Ty(vy) x Ty and To(ve) * Tty are independent
spanning trees rooted at (rq,ry) of G4 X Gp.

Lemma 3 Let T, be a spanning tree rooted at ro of Gq.
Let Ty and Ty be independent spanning trees rooted at ry
of Gy, and let vy be a son of ry in Ty and vy be a son of rp
in Ty, Then T, » T1(v1) and Tq * T (vy) are independent
spanning trees rooted at (r4,73) of G X Gs.

Lemma 4 Let T,y and T, be independent spanning
trees of G, and let v, be a son of rq inTy1. Let Ty and
Ty2 be independent spanning trees of Gy, and let vy be a
son of ry inTyy. Then Tqy(va)*Th o and Ty 2% Ty (vs) are
independent spanning trees rooted at (ra,vs) of Ga X Gp.

Suppose that G, is an n4-channel graph and G is an
np-channel graph. Let T, ,--+,Tan, be 1, independent
spanning trees rooted at r, of G, and let Tj 1, -+, Thn,
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Figure 2: Examples of T,(v,) o T}, and T, o Ty (1)

be ny independent spanning trees rooted ry of Gy. For
each ¢ (1 €1 < n,), let v, ; be a son of ry in Ty 4, and for
each j (1 < j < ny), let vy j be a son of ry in Ty ;. We now
consider the following n, + np spanning trees:

Ta,l (Ua,l) * Tb,h Tty Ta,na(va,nu) * Tb,la

Tay *To1(v6,1)s -+ Ta1 * Toyn, (Vo,n,)

From Lemma 2, Lemma 3 and Lemma 4, the n, +np — 2
trees listed above excepting To1(va,1) * Toy and To *
Ty,1(vs,1) ave independent spanning trees rooted at (rq,7s)
of Ga X Gb.

The goal of this paper is to construct n, + np inde-
pendent spanning trees rooted at the same vertex of the
product graph of an n,-channel graph and an n,-channel
graph. For this purpose we introduce another operation,
denoted by 0", on spanning trees. Let T, be a spanning
tree-rooted at r4 of G4, and let Ty be a spanning tree
rooted at ry of Gy, Let v, be a son of ry in T, The vertex
set of Tu(vq) 0 T} is V(G4 X Gp), and its edge set consists
of the following edges:

(1) For each zyz; € E(T,), connect (z1,7) with
(z2,78).

(2) For each y1y, € E(Ty), if € V(To) — {ra} then
connect (z, 1) with (z, y2).

(3) For each y € V(T}) —

{rs}, connect (rq,y) with
(Va,y)- .

Let vy be a son of r, in T}, Symmetrically we can define
Ta 0 To(vp).

Examples of T,(v,) 0 Ty and T, o Ty(vp) are shown in
Fig. 2, where Ty, T}, vq, and vy are given in Fig. 1.

We have the following four lemmas. The proofs of these
lemmas are omitted here.

Lemma 5 Let T, and Ty be a spanning tree rooted at v,
of G, and a spanning tree rooted at ry of Gy, respectively,
and let v, and vy be a son of rq in T, and a son of vy in

T, respectively. Then each of Ta(vs) o Ty and T, 0 Tp(vs)
is a spanning tree rooted at (r4,7p) of Go X Gb.

Lemma 6 Let T, and T}, be a spanning iree rooted at rq
of G, and a spanning tree rooted at ry of Gy, respectively.
Let vy and vy be a son of rq in T, and a son of ry in T},
respectively. Then To(vg) 0Ty and T, 0 Ty(vs) are indepen-
dent spanning trees rooted at (rq,7s) of Ga X Gy.

Lemma 7 Let Ty and Ty be independent spanning trees
rooted at v, of Gg, and let vy and vy be a son of rq in T}
and a son of rq in Ty, respectively. Let Ty be a spanning
tree rooted at ry of Gy. Then Ty (v1)oTy and Ty(vz2)* Ty are
independent spanning trees rooted at (rq,vy) of Ga X Gb.

Lemma 8 Let T, be a spanning tree rooted at rq of Ga.
Let Ty and T, be independent spanning trees rooted at 1y
of Gy, and let vy and vy be a son of r, in Ty and a son of
ry in Ty, respectively. Then TyoTi(v1) and T, xTh(ve) are
independent spanning trees rooted at (rq,m) of Gg x Gy.

Consider the following n, + ny spanning trees rooted
at (rq,rp) of G X Gy:

Ta1(van) 0 Th,1,

Ta,Z(Ua,Z) * Tb,l» Tty Ta,na(va,na) * Tb,la
Toy 0 Tp1(vs1),
Ta,l * Tb.Z ('Ubﬂ)» B Tﬂ»l * Tbv"b (vb,m)

These spanning trees are obtained from the n, + 7,
spanning trees listed earlier in this section by replacing
Ta,l(va,l) * Tb,l and Ta.l * Tb'],(’ub']) with Ta|1(va,1) (<] Tb_]
and T, o Ty 1(vs,1), respectively. The set of these span-
ning trees are still not independent spanning trees rooted
at (rq,7) of Go X Gy. To construct ng + np independent
spanning trees, we need further modifications.
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3 Construction of Independent
Spanning Trees

Let T,1,:++,Tqn, be n, independent spanning trees
rooted at ry of G, and let T}, be a spanning tree rooted
at rp of Gy. For each i (1 <1 < ng), let k%, be the number
of sons of rq in Ty, and let Cos = {sl;,- -, s:':“,-} be the
set of sons of 74 in Ty i. Let Co = CayUCa2U---UCyp,.
For each v € V(T, 1) — {ra}, let pa,1(v) be the parent of v
in Ta,1~

The variation of Tq,;, denoted by var(T,,), is a graph
with vertex set V(T,,1) and the edge set E(T, ;) U {rqz |
T € Co—Can} — {pai(a)z | € Ca — Cq1}. Note that
Pai()z is an edge connecting p,;(z) and z, and that
r4Z is an edge connecting r, and z in G,. Apparently
var(T,,1) is also a spanning tree rooted at r, of Gl,.

We now modify T, 1 (va,1) 0 T}, where vagl is one of the
sons of ry in T, ;. For each z € Cuy (2 <1 < ng) and
each y1yp € E(T}), edge (z,41)(z,y2) of Tan(vas) o T
is also used in Ty i(vq,i) ¥ T;. For each z € C, — Cy
and each y,y2 € E(T}), we remove edge (z, y1)(z, y2) from
T4,1(va,1) © Ty, and for each z € Cy — C,; and each y €
V(Gy) — {rs}, we add edge (p,,1(2),y)(z,y). This modi-
fication is called the transformation. The graph obtained
from Tg,1(va,1) © Tp,; by the transformation is denoted by
tr(Ta,1(va,1) © T}). More formally tr(T, 1(va1) o Tp) is a
graph with the vertex set V(G, x G;) and the edge set
E(Ta,l('-'a,l) oTb) U{(Pu,l(x)a y)(z, y) l z€C,—Cqy, y €
V(Gy) = {re}} = {(mp1)(=,2) | © € Ca = Capts 111z €.
E(T)}. For each z € C4—C,1 and each y € V(Gy)—{rs},
(Pa,1(2),y)(2,y) is an edge of G, x G, since p, 1 (z)z is an
edge of T, ;. From the construction of tr(Tg 1 (va,1) 0 Tp),
it is also a spanning tree rooted at (rq,7s) of G4 X Gy.

Let T 1, Th,n, be ny independent spanning trees
rooted at ry of G, and let T, be a spanning tree rooted at
rq of Ga. For each i (1 < i < ny), let kj be the number of

sons of 7, in Ty ;, and let C ; = {si,;, .. s:fi} be the set of

sons of ry in Th;. Let Cp = Cyy UCha U---UChy,.
For each v € V(T},1) — {re}, let py1(v) be the par-
ent of v in T}). Symumetrically we define var(T},) and
tr(Ta 0 Ty,1(vb,1)), where vy is one of the sons of ry in
Ty,1- The variation of T} ,, denoted by var(Ty,1), is a graph
with the vertex set V(T},,) and the edge set E(Tp,;)U{rpy
|y €Ch—Cor}—{ps1(y) | y € Co— Cs1}. Itisalsoa
spanning tree rooted at r, of Gp. The transformation of
T, 0 Tj,1(vs,1), denoted by tr(T, o Tj,1(vs,1)), is a graph
with the vertex set V(G4 x Gb) and the edge set E(T, o
Ty1(ve,1)) U{(2. 200 ())(2,9) | @ € V(Ga) — {ra}s v €
Co = Coa} — {(z1,y)(z2.9) | y € Cp — Co1, miz2 €
E(T,)}. The transformation of T; o Ty,1(vp,1) is also a
spanning tree rooted at (rg,7) of G4 x Gp. Examples
of var(Ta,1) and var(Iy,) are shown in Fig.3. Exam-
ples of T 1 (va,1) 0 var(Ty,1) and tr(Ty1(va,1) 0 var(Th,1))
are shown in Fig. 4, where 75 1, T},1, and v,,) are given in
Fig. 3. .

Assume that G, is an n-channel graph and G is an
ny-channel graph. We now consider the following n, + ns
graphs:

tr(Ta,1{va,1) o var(Tp 1)),

To2(va2) *var(Th1), - 5 Tan,(Vaun,) ¥ var(Th,1),
tr(var(Ta,1) 0 Tp1{vs,1)),
var(Ty 1) * Tpa(vp,2),

where for each i (1 < i < n,), vg; is one of the sons of ry
in T ;, and for each j (1 < j < ny), vp,; is one of the sons
of r in T} ;. From Lemma 1, Lemma 5 and the discussion
above, these graphs are n, + n, spanning trees rooted at
(ra,7b) of G4 x Gp. We show that these n, + n, spanning
trees are independent spanning trees rooted at (rq,75) of

Ga X Gh.

y var(Tn,l) * Tb,ng (Ub,ﬂo)a

Lemma 9 Foreachi (2 <i<n,)and each j (2<j<
), Ta,i(va,i) * var(Ty,1) and var(Ta 1) * Ty j(vs,;) are in-
dependent spanning trees rooted at (rq,rs) of Go X Gb.
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Proof: From Lemumna 4, T, i(ve;:) * Tpy and Ty *
Ty, j(vs,;) are independent spanning trees rooted at (r,, T5)
of G4 x Gy. Consider the paths from (rg,73) to (z,y) in
Ta,i(va,i) * T,y and in Tg;(vqe,:) * var(Ts,1). If the former
path does not contain any node (s,t) such that s € Cy;
and t € Cy — Cb,1, then these two paths are identical.
Suppose that the former path contains a node (s,t) such
that s € Cy; and ¢ € C} — Cp;. Assume that @ is in §7;
(i.e., the subtree rooted at s" ; of Ty ;). Then the former

sk,
path is (ra,7s) Toy (sm,rb) Dy (s“,t) Dy (shiy) =3
(z,y). On the other hand, the latter path is (ra,7s) Loy

uur[T ) vur(T

(s5,i78) 3 (sh0t) i) a.»y)=>(z y). Since
(T )

(sa‘, t) Ve (sa,,y) and (sa,, t) ='—¥;’> (say;,y) are iden-

tical paths, the latter path is obtained from the former
path by cutting the subpath (s SaisTh) Ly (sh;,t) short
to edge (sh;,ry)(sh;,t). Note that edge (sh;,7;)(sh ;1)
is not used in var(Ta 1) * Ty j(vp ;). For the paths from
(ra,re) to (z,y) in T,y * Ty ;(vs,;) and in var(T,,) *
Ty,;(vs,j), we can apply the same argument. Hence, for
each (z,y) € V(Gq X Gb), the paths from (rq,r3) to (z,y)
in To1(vay) * var(Tp,) and in var(Tqy) * Th1(ve,1) are
internally disjoint. Therefore, T, i(vq,;) * var(Tp,;) and
var(Ta,1)*Ty, ;(vs, ;) are independent spanning trees rooted
at (rq,1p) of G X Gp. =]

For clear description of the proofs of the following three
lemmas we introduce functions 4,; and Ap ;. Remember
that p,1(v) and ps 1 (v) denote the parents of v in T, ; and

in Ty, 1, respectively. For each v € V(Ty,1) — {ra}, let
N = a,l (pa,l (’U)) ifve Ca - Ca,l
Aa"(l)‘{ v ifudCom Col.

Symmetrically, for each v € V(T3,1) — {rs}, let

_ f Asa(psa(v)) Coa
Aps(v) = { : e

ifveCy,—
ifvgCy,

Lemma 10 A pair of tr(Tai(va1) o var(Ty,)) and
tr(var(Ta1) o Tp,1(vs,1)) are independent spanning trees
rooted at (ra,1) of Goa X Gb.

Proof: From Lemma 5 and a similar argument to the
proof of Lemma 7, Ty 1(vq,1) 0 var(Ty,) and var(Ta) o
Ty,1(ve,1) are independent spanning trees rooted at (rq, )
of Ga X Gb.

Consider the paths from (rs,7) to (z,y) in
tr(Ta,1(va,1) 0 var(Ty,1)) and in tr(var(Ta) o Ty 1(ve,1))-
If 2 ¢ Co — Ca1 and y € Cy — Cp,1, then the paths
from (rq, ) to (z,y) in tr(Ts1(vay) o var(Th1)) and
in Ty1(ve1) o var(Ty,) are identical, and the paths
from (rq,rp) to (z,y) in tr{var(Ts1) o Tpa(ve,)) and
in var(Ta1) o Th1(ve,1) are identical. Hence, in this
case the paths from (rg,m) to (2,y) in tr(T,:(vas) ©
var(Ty,1)) and in tr(var(T,,1) o Tp,1(ve,1)) are internally
disjoint. ¥ 2 ¢ Cq — Cq1 and y € Cp — GCoy,
then the path from (rq,rp) to (z,y) in ¢r(Ty;i(va,) ©

A Tp,
var(Th,1)) is (ra,7s) Iy (z,7p) vartZy) (z,y), and the

path from (rq,7s) to (2,y) in tr(var(Tas) o Tp 1(vb 1))
. T, Ta.1)
is (ravrs) 23 (reyAoa(®) Y (2, 40a(y) =3
(z,y). These paths are intemally disjoint. ¥ z €
2 — Ca1 and y € Cy — Cpy, then the path from
(rarms) to (2,) in tr(Ta s (va,1) 0 var(T)) is (ra,ms) 23
(Aar(2)rs) "2BY (Aun(2)y) =3 (2,y), and the
path from (rq,ms) to (2,y) in tr(var(Ta,:) o Ta(ve1))
. T, (T, Ty,
is (ra,rs) =% (ra,Ab1(¥)) vertfy) (7, Aoa(y)) =3
(z,y). These paths are also mtemally disjoint. Therefore,
tr(Ta,1(ve,1) 0 var(Ty,1)) and tr(var(Ta,) o Tp 1 (vs1)) are
independent spanning trees rooted at (rq,r3) of Ga X Gb.



Lemma 11 For each i (2 < i < ng), tr(To1(va,) o
var(Ty 1)) and T, i(vg ;) * vczr(Tg7 1) are independent span-
ning trees rooted at (vq,7p) of Gq X Gy.

Proof: Since var(T},) is a spanning tree rooted at r, of
Gy, from Lemma 7, Tg 1 (va,1 Jovar(Ts 1) and Ty sxvar (T 1)
are independent spanning trees rooted at (4,75} of G, x
Gp.

Consider the paths from (rs,7) to (z,y) in
tr(Ta,1(va,1) 0 var(Th 1)) and in T 5(ve ;) * var(Ty1). If
z ¢ Cy — Ca,, then the paths from (rq,74) to (x,y)
in tr(T,1(va1) 0 var(Th,1)) and in Ty (ve) © var(Th1)
are identical. Hence, in this case the paths from (rq,75)
to (z,y) in tr(Te;(var) 0 var(Ty,)) and in T, :(va,) *
var(Ty,;) are internally disjoint. Suppose that = € C, —
Ca,1 and z is in subtree S,’,"i of T, ;. Then the former path

from (rq,73) to (z,y) is (rq,7s) T—i$ (Ag,1(z),75) mrm'l)
(4an(2)9) 23 (3, v,
to (z,y) is (rq,m) ——) (Sa,,Jb) ,“,y) :»
(z,y). Since T,; and T,; are independent spanning
trees rooted at r, of G, path (Ag;(z), y) =$ (z,y) in

and the latter path from (ra,rb)
var(Ty 1)
B

tr(Ta,1(va,1) ovar(Ty,)) and path (sk;,y) = (x, y) have
no common vertices excepting (z,y). Hence, in this case
the paths from (rq,73) to (2,y) in tr(T,,1(va)ovar(Ts 1))
and in T ;(vg,;) * var(T},;) are internally disjoint. There-
fore, a pair of these trees are independent spanning trees
rooted at (ry4,75) of G4 X Gy. o

Symmetrically we have following three lemmas.

Lemma 12 For each j (2 £ j < ny), tr(var(Ty;) o
Ty,1(vs,1)) and var(Ta,1) * T j(vs,;) are independent span-
ning trees rooted at (rq,7p) of Go X Gs.

Lemma 13 For each i (1 < i < n,), tr(var(Te,) o
Ti1(vs,1)) and Ty i(vai) *var(Ty,1) are independent span-
ning trees rooted at (rq,7p) of Gq X Gy.

Lemma 14 For each j (1 € j < n3), tr(Tan(vas) ©
var(Ty,)) and van(Ty 1) * Ty j(vy, ;) are independent span-
ning trees rooted at (rq, 1) of Go X Gp.

Theorem 1 If G, is an ngs-channel graph and Gy is an
ny-channel graph, then Ga x Gy is an (ng + ny)-channel
graph.

Proof: It is immediate from Lemmas 2 — 4 and ]'.kmmas
9—14. [m]

4 Concluding Remarks

The following two problems arise from our approach if we
consider general graphs.

(1) How can we construct independent spanning trees
rooted at the same vertex of an arbitrary graph?
This is a very hard problem. It is open whether
every n-connected graph is an n-channel graph.

How can we design efficient broadcasting protocols,
in particular for one-port broadcasting, based on
message transmissions through independent span-
ning trees. Since such a broadcasting scheme con-
sists of sub-broadcasts, each through one of the in-
dependent spanning trees, there are few hints how
each vertex should use a strategy to achieve short
broadcasting time.

These problems would be worthy for further investiga-
tion.
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