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Recently a new approach has been proposed for inferring the evolutionary process of genomes
based on comparison of gene orders. It searches for the minimum number of operations for sort-
ing of a permutation of genes from one genome to another by reversals and transpositions. The
complexity of the problem is conjectured as NP-hard. We developed a polynomial-time approx-
imation algorithm for the problem and proved that the algorithm provides an approximation
ratio of 2. We compare its performance with the optimum solution in randomly generated per-
mutations, and show results by applying the algorithm to comparison between bacterial genomes
whose complete DNA sequences have been determined recently.



1 Introduction

Recently, a new approach to the evolution-
ary analysis among species was proposed [1].
It focuses on comparison of not gene sequences
but gene orders on whole DNA sequences (so
called, genome) of different species, taking ac-
count of several genome-level mutations.

A combinatorial problem of sorting by re-
versals (corresponding to genome rearrange-
ments by inversions) studied intensively. Ke-
cecioglu and Sankoff suggested the first per-
formance guaranteed (2-approximation) algo-
rithm for this problem [2]. Later Bafna and
Pevzner improved the error bound to 7/4 [3].
The problem is shown to be NP-hard [4].

Bafna and Pevzner studied a similar sort-
ing by transpositions problem. They gave a
(3/2)-approximation algorithm [5]. Gu, Peng
and Sudborough studied an extended problem
that is sorting by reversals and transpositions
simultaneously [6]. In the problem, they in-
troduced three operations: reversal, transpo-
sition and reversal-+transposition that inverts
a segment of DNA and inserts it into another
place on the same DNA sequence as one opera-
tion. They gave two approximation algorithms
for this problem: a 2-approximation algorithm
of which time complexity may not be bound
by a polynomial of the length of the permu-
tation, and a 2(1 + 1/k)-approximation algo-
rithm, where k& > 3 is any fixed integer, which
runs in polynomial time.

In this paper we treat a restricted version
of the problem studied by Gu et al., which
includes only reversal and transposition op-
erations. A reversal-+transposition operation
is regarded as a combination of reversal and
transposition operations. We will give a 2-
approximation algorithm and performance re-
sults for sorting permutations generated ran-
domly and gene orders of bacterial genomes
that are completely determined recently.

2 Genome Rearrangements

In this problem, each gene is represented by
an integer number. Since genes are oriented in
a DNA sequence, each gene is described as a
number with + or - sign. Thus the order of

genes in a DNA sequence is represented by a
signed permutation of the numbers.

Let II = (my7o - - - 7, ) represent a signed per-
mutation of integers 1 through n, where m; is
the number in the i-th position.

A reversal 7(i,j) of the interval [¢,5 — 1] is
an inversion of the subsequence mm;41 -+ mj—1
of I (1 <i<j<n+l) (O rEj) =
(T Ty — Mjoq e — 7 T Tn) ).

A transposition t(i,j, k) inserts an interval
(2,7 — 1] of II between mp—; and 7 (1 <2 <
F<n+L1<k<n+1) (O-16,j5k) =
(Fy e My T e M1 T+ W1 Mo+ M)

Bafna and Pevzner introduced the notion
of breakpoint graph for representing the struc-
ture of the problem [3]. First, they introduced
a breakpoint graph for unsigned permutation.
Then they extended it for signed permutation.
We follow the fashion.

Breakpoint graph for unsigneéd permu-
tation: Add extra two numbers mg = 0 and
Tp+1 = n + 1 into an unsigned permutation
Il = ((mymg---mn) of {1,2,...,n}. Let i ~ j if
|¢ — j] = 1. A pair of consecutive elements =;
and m;y1 (0 < i < n) of L is called a breakpoint
if m; & mip1. A pair of non-consecutive ele-
ments m; and 7; (i+ j) is called an adjacency
if ®; ~ m;. A breakpoint graph G(II) = (V, E)
of Il is a graph such that each vertex v € V is
a number which is in either a breakpoint pair
or an adjacency pair and each edge e € E' is a
link between either a break point pair or an ad-
jacency pair. Hereafter, we call a link between
a breakpoint pair b-edge and a link between
an adjacency pair a-edge. Every edge in the
graph is involved in alternating cycle, namely
every two consecutive edges are different types,
either a-edge or b-edge (see Lemma 2). Here-
after we refer to alternating cycle as “cycle”.

Breakpoint graph for signed permuta-
tion: For extending the notion of breakpoint
graph for unsigned permutation to that for
signed permutation, Bafna and Pevzner intro-
duced a transformation to a signed permuta-
tion of size n to a corresponding unsigned per-
mutation of size 2n [3]: a positive number +¢
is replaced by two unsigned numbers, 2 — 1
and 2i; whereas a negative number —i¢ is re-
placed by 2i and 2¢—1. After this transforma-
tion, breakpoint graph for signed permutation
is constructed similarly to that for unsigned
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Figure 1: A breakpoint graph of a signed per-
mutation II= (+3 +4 +5 —2 —1).

permutation.

Figure 1 shows a breakpoint graph of a signed
permutation Il = (+3 +4 +5 —2 —1). In
Fig. 1, its transformed unsigned permutation
irans = (56789104321) and two extra num-
bers 0 and 11 are added at the both ends.
Hereafter we refer to the transformed unsigned
permutation (from a signed permutation) as
“permutation”.

3 Lower Bound

For a permutation II, let b(Il), c(II) and
d(II) be the number of b-edges (i.e., break-
points), the number of cycles and the distance
between II and I (i.e., the minimum number of
operations that transforms IT into I), respec-
tively. Denote Ab = A(II, p) = b(II) — b(IIp)
(decrease in the number of breakpoints by an
operation rho, either a reversal or a transposi-
tion), Ac = Ac(Il, p) = c(IT) — ¢(Ilp) (decrease
in the number of cycles by rho).

Since a transposition may affect three b-edges,
—3 < Ab < 3 by a transposition. Similarly,
since a reversal may affect two b-edges, —2 <
Ab < 2 by a reversal. We refer to these types
of transpositions or reversals as i-transposition
or i-reversal where i = Ab.

Thus trivial lower bound of the minimum
number-of operations for sorting a permuta-
tion II is b(II)/3. To conduct better. lower
bound, we introduce the following three lem-
mas on the property of breakpoint graph. The
proofs of these lemmas are omitted due to space
limitation in this paper.

Lemma 1 For every m; (0 < <i< 2h+1)' in
G(I), there exist at most one b-edge and at
most one a-edge incident with ;.

Lemma 2 Every path along edges in G(II)
forms an alternating cycle composed of the
same number of a-edges and b-edges.

Lemma 3 Every cycle in G(II) has at least
two a-edges and at least two b-edges.

Lemma 3 suggests the following theorem.
Theorem 1 Ac> -2.

Proof. The number of newly yielded b-edges
(i.e., —Ab) is at most three in a transposition.
Thus, by Lemma 3, only one new cycle can be
created if every b-edge of the cycle is either
of the new b-edges. Another possibility is the
division of a cycle. A cycle can be divided into
at most three cycles by using the three new
b-edges. Thus the increase in the number of
cycles (i.e., —Ac) is at most two (3 new cycles
— 1 original cycle). O

From Theorem 1, the following theorem is
derived.

Theorem 2 Ab— Ac< 2.

Proof. As mentioned above, —3 < Ab < 3.
Thus we consider the following cases.

(i) Ab=3
Only 3-transposition can remove three b~edges
simultaneously. In this case, a cycle that has
the three b-edges to be removed is eliminated.
Namely, the number of cycles decreases by one
(i.e., Ac=1). Thus Ab— Ac=2.

(il) Ab=2
Either 2-transposition or 2-reversal removes two
b-edges. 2-transposition yields only one new
b-edge. However at least two new b-edges are
needed for constructing a new cycle or divid-
ing a cycle into two cycles. Thus no cycles are
not yielded by this operation, namely Ac > 0.
Therefore Ab — Ac < 2. In the case of 2-
reversal, a cycle that has the two b-edges to
be removed is eliminated (i.e., Ac = 1). Thus
Ab— Ac=1.

(iii) Ab =1
Either 1- -transposition or 1-reversal removes one
b-edge. 1-transposttion yields two new b-edges
Thus ‘a new cycle may be created or a cycle
may be divided into two cycles by 1-transposition.
This implies Ac > —1. Therefore Ab — Ac <
2. Similarly, 1-reversal yields one new b-edge.
Thus no cycles are not yielded by this opera-
tion (i.e., Ac > 0). Therefore Ab— Ac < 1.



(iv) Ab < 0.
In this case, Ab — Ac < 2 is immediately de-
rived from Theorem 1.

From (i) to (iv), this theorem is proved. O

Theorem 2 suggests the lower bound of this
problem as follows.

Theorem 3 d(II) > (b(I) — c(IT)) /2.

Proof. Let t = d(II). Denote p:, pt-1, ..., p1 are
operations that give the minimum number of
operations. Then the transformation from II
into T is represented by a recurrence relation
Oi_1y = Lgye (1 <£i<t) under () =11
and H(o) = I.
By Theorem 2,
d(I;) = dG-1)) +1
> d(IT ;1)) + (AT, pi) — Ac(Tlz), pi))/2
=d(Mz-1y) .
+(6( ) - b(s—1y) — (e{Tlgo) — e(lls—))) /2
This equation can be transformed into the
following equation. :
d(Msy) — ((Iy) — e(Ily)))/2
> d(;-1)) — (B(Mgi-1)) — e(Ti-1)))/2
>+ 2 d(ll) = (B(Io)) — c(T0)))/2

Since the breakpoint graph for the identity
permutation I has no b-edges and no cycles,
d(H(o)) = b(H(o)) = C(H(o)) = 0. Thus, d(IT) >
(6(I1) — ¢(I1))/2 holds. O

4 Upper Bound

In Theorem 3, the equality holds when Ab—
Ac = 2. To approach this condition, we have
developed a greedy algorithm. For each step,
the algorithm explores an operation that re-
moves as many breakpoints as possible with-
out decrease in the number of cycles. To do
this, we introduce the notions of such opera-
tions.

Suppose a cycle C = (Vg, E¢) in a break-
point graph G(II). a reversal r(z,7) is called
one-cycle reversal if (m;—1,m;) € E¢ and (7j_1,
n;) € Ec. Similarly, a transposition (i, j, k)
is called one-cycle transposition if (m;—1,m;) €
Ec, (7rj_1,1rj) € E¢ and (7rk_1,7rk) € E¢.
Note that all the edges are b-edges.

The following theorem gives the property of
these operations.

Theorem 4 Ac < 0 for one-cycle 2-trans-
position, one-cycle 1-transposition and one-cycle.

Proof. Let p be any of these operations. Let
C; and C;(2 < i < ¢(II)) be the cycle where
the operation is performed and the other cy-
cles in G(II), respectively. Since C1 € G(Ilp)
and C; C G(Ilp), c(llp) > c(Il) — 1. Since
any of the operations yield at least one new b-
edges, there exists at least one cycle except C;
in G(Ilp). This implies ¢(IIp) > ¢(II). Thus
Ac=c(Il}) - c(Ilp) < 0. O

In the algorithm, the operation to be per-
formed at a step is determined based on the
following classification of the types of break-
points.

Let (m;—1,7;) and (mj—3,m;) be consecutive
two b-edges that are connected by an a-edge.
There are four types depending on the position
of the a-edge.

(a) (wi—1,mj_1) is an a-edge.

A reversal 7(4,7) is a one-cycle 1-reversal or
2-reversal.

(b) (mi—1,7;) is an a-edge.

If there exists another b-edge (mg-1,7m) (7 <
k—1) in the same cycle, a transposition t(j, k, ©)
is a one-cycle 1-transposition, 2-transposition
or 3-transposition. '

(c) (i, mj—1) is an a-edge.

If there exists another b-edge (mi—y1,mk) (2 +
1 < k < j —1) in the same cycle, a transpo-
sition t(k,7,1) is a one-cycle l-transposition,
2-transposition or 3-transposition.

(d) (m;,7;) is an a-edge.

A reversal 7(¢,j) is a one-cycle 1-reversal or
2-reversal.

In type (b) and (c), another b-edge is re-
quired in the same cycle. ' Thus it is trou-
blesome when a cycle consists of only type
(b) and (c) b-edges. Bafna and Pevzner call
such a cycle non-oriented cycle [5]. A non-
oriented cycle has one a-edge of type (b) (be-
tween the leftmost end and the rightmost end
in permutation) and at least one a-edge of type
(c). For example, a breakpoint graph of Il =
(012785634) has a non-oriented cycle com-
posed of four edges: (7,6) (a-edge of type (c)),
(6,3) (b-edge), (3,2) (a-edge of type (b)) and
(2,7) (b-edge).

However, the next theorem dissolve this prob-
lem.



Theorem 5 Between any two consecutive
b-edges in a non-oriented cycle, there exists at
least one b-edge in another cycle.

Proof. Assume no b-edge exists between two

consecutive b-edges (say, (71, m;) and (7;-1, 7;)

(z € 7 —1) in a non-oriented cycle. By def-
inition of non-oriented cycle, the a-edge be-
tween these b-edges belongs to type (c). Thus
tf j—1and m ~ m;_; hold. By the as-
sumption, a sub-permutation (7m; 741 -+« mi_1)
is a sequence of ascending or descending order.
Thus either m; < wj_1 — 2 or m; > m_1 +
2. Thus m; A~ mj—1 but it contradicts that
(73, mj—1) is an a-edge. O

Thus, in type (c), there exists another b-edge
(me—1,m%) G+ 1 < k < j—1). Therefore at
least 1-transposition can be carried out even
in a non-oriented cycle.

The outline of our algorithm is as follows:
Algorithm 1
begin
Construct G(II);
while there exist b-edges
begin .
if one-cycle 3-transposition is executable
do it; -
elseif one-cycle 2-transposition is executable
do it;
elseif c;ne-cycle 2-reversal is executable
do it;
elseif one-cycle 1-transposition is executable
do it;
elseif c;ne-cycle 1-reversal is executable
do it;
elseif a non-oriented cycle exists
do 1-transposition for a non-oriented cycle
end
end

In this algorithm, the number of iteration in
while-loop is proportional to the number of b-
edges and the process to check the condition
in each if-statement needs time proportional to
the number of b-edges. Since the number of b-
edges is proportional to the size of permutation
in the worst case, the time complexity of this
algorithm is bound by O(n?) where n is the
size of permutation.

The value of Ab — Ac¢ for each operation in
this algorithm is: Ab — Ac = 2 in one-cycle
3-transposition, Ab — Ac > 2 in one-cycle 2-
transposition by Theorem 4, Ab — Ac = 1
in one-cycle 2-reversal, Ab — Ac > 1 in one-
cycle 1-transposition and one-cycle 1-reversal

by Theorem 4 and Ab—Ac > 1in 1-transposition

* in non-oriented cycle by Theorem 4.

Thus Ab — Ac > 1 holds for every operation
in this algorithm. By similar reduction to the
proof of Theorem 3, d(II) < b(II) — ¢(II) can
be derived. Therefore we conclude that the
approximation ration of this algorithm is 2.

5 Performance Results

For the performance evaluation of our algo-
rithm, first we compared results with the op-
timum solution in random permutations. We
generated 100 permutations of length 8. The
optimum solution (i.e., the minimum number
of operations transformed these permutations
into the identity permutation) is computed by
some exhaustive search method.

We also compared its performance with that
of the first approximation algorithm by Gu
et al. [6] (the 2-approximation algorithm of
which time may not be bound by a polynomial
of the length). Note that our implementation
of Gu et al.’s algorithm does not handle rever-
sal+transposition operation but only reversal
and transposition operations.

Figure 2 shows the distribution of approxi-
mation ratios (the ratio of the number of op-
erations computed by these algorithms. to the
optimum number). The 2-approximation al-
gorithm developed by Gu et al. is referred as
“Good Cycle”, whereas our algorithm as “Pro-
posed Method.” The average approximation
ratios are 1.4 in Gu et al.’s algorithm whereas
1.19 in our algorithm. In Fig. 2, all the so-
lutions computed by both methods are con-
verged within error bound of 2. Moreover our
method achieves better performance than the
algorithm by Gu et al.

- For the comparison between real genomes,
we used genomes as shown in Table 1. The
genomes Gl and G2 belong to the same genus
(one level higher layer than species); both G3
and G4 are methanogenic archaebacteria; and
G5 and G6 are referred as closely related bac-
teria [7]. To extract identical pairs (more ex-
actly, orthologous pairs) of genes, we performed
pairwise global alignment for all combinations
of gene sequences (in amino acid residues) based
on the bi-directional best hit method [7]. Ta-
ble 2 shows their results. The number of op-



erations for transforming from one genome to
another seems to fit biological knowledge. The
execution times are measured on Sun SPARC-
-station 20 (SuperSPARC-II, clock 75 MHz).

6 Conclusions

We have developed a 2-approximation algo-
rithms for genome rearrangements with rever-
sals and transpositions. From comparison be-
tween our algorithm result and the optimum

solution in random permutations, our algorithm

achieves good performance whose average ap-
proximation ratio is 1.19. We also applied our
algorithm to some bacterial genomes whose
complete DNA sequences are determined re-
cently. The results seem to fit biological knowl-
edge, but its further evaluation remains as our
future work.
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Table 1: Bacterial complete genomes used for
the analysis of genome rearrangements

] Number
ID | Species of genes
GI | Mycoplasma 468
genitalium
G2 | Mycoplasma 677
pneumoniee
G3 | Methanococcus 1735
jannaschii
G4 | Methanobacterium 1871
thermoautotrophicum
G5 | Haemophilus 1680
influenzae
G6 | Escherichia 4290
coli
Table 2: Sorting results between bacterial
genomes
o Number of Number of Exec.
Genomes matched genes  operations  time
Gl vs G2 : 425 3 0.02
G3 vs G4 289 63 0.23
G5 vs G6 857 181  4.17

The execution time is measured in seconds.



