T 7L & R 191
(1998. 5. 22)

Energy Function based on Restrictions for Supervised Learning on
Feedforward Networks

Alexandra I. Cristea and Toshio Okamoto
The Grad. School of Info Systems, Univ. of Electro-Comm.
IS, AI lab., Chofu, Chofugaoka 1-5-1, Tokyo 182, Japan’

Abstract

In this paper we present the construction and usage of an energy function for supervised learning on feedfor-
ward networks, based on restrictions. We focus on the mathematical deductions of the energy function, based on
the Lyapunov (also called infinite) norm, from error minimization procedures. We will show how the movement
equations derived from this energy function improve the learning and generalization capacity of the neural tool
in the case of stock exchange (SE) prediction, in the sense of time-series (TS) prediction. We will also show
some comparative results of our method and the classical backpropagation (BP) method, obtained by means of
the T (Theill) test and the correlation computation. The verification of the proposed energy function is done
through computer simulation.

BMHV 74 —FI739—F- -2a—-5VFv V7—22Bi15
T ETS AV -ER

FVIHVES -4 T7F - PYAFT, BEX
BREEAERERE Bl AT AEHER
RS A7 LAREHEEY MBAIE Y X 7 AFRE
T182 HEHFMATFAMr & 1-5-1

AT, BBV EFEBEI7A—F 747 —FHO=2-F V3 b
T—7IZBIF ANV -BRORE LERICE L TRRT S, COTRNF—
B¥id Lyapunov (infinite) / WA%RNR—Z|IZL, € TORE LOHIKICE
SWTEREI STV 5, FIC, BERSUFREPL/BONDI A LF—BR
ORFHEBIERED TS, BET I ANVT RGP LBINDIERDE
1625, B#;'fi?ﬂ?—&o)?iﬁw—)v, WICHREZ TRITAY - VD=2 —F VR
7 — 27 BOET L PALBA R I HO 2R L5, REFEOB T
BT 37202, REWRINY 7 7uny - a VEOBEE ORBETS 120
Cy3ab—avERPTok, TLT t MESEToHENS, BR
FHBEOR YIRS N, g ‘

1 Introduction

Optimizations of Neural Networks (NN) have been performed in multiple ways. Algorithmic improve-
ments are the traditional concerns of the NN community (see e. 2 [1], [5]). Among these, the most
popular learning algorithms for feedforward networks try to minimize a certain cost functmn, which
depends on an adjustable weight vector.



In the present paper we will confine ourself to the traditional optimization methods ( see [4] for
details), and focus on the mathematical deductions of an error metric for feedforward networks (also
known as multi-layer. perceptrons), based on the Lyapunov (also called infinite) norm and on error
minimization procedures. This error function is an extension of the quadratic penalty function, and is
applicable to SE TS forecasting. We will show how the effective use of this norm reduces the sensitivity
of the network to minor errors.

Forecasting of TS is a challenging task that attempts to find the rule/mechanism behind data
generation. However, in such cases, there is always the question of the predictability of the data, in other
words, if the data is fully deterministic, therefore predictable, fully random, therefore unpredictable,
or, as in most cases, somewhere in-between. As the participants at a stock trading possess different
forecasting tools and act driven by their own private theories, it can be presumed that the process is
not influenced ounly by one theory. The present research is done in view of this point.

Benchmarking of our system is done by comparison with the classical BP method; obtained by means
of the T (Theill) test and the correlation computation.

2 Deductions of the energy function

For TS prediction we can rewrite the prediction problem in a standard Energy-minimization form. We
used a Lyapunov based development of an energy function, but while the Lyapunov! method is based
on vector derivation, we used weights’ change, therefore matrix derivation, as follows.

Let r be the error vector, r; = y; — dj;§ = 1,..,n, where y; = f(¥ iz, wijzi), is the actual,
calculated output and d; the desired output for neuron j in the output layer; z; is one of the inputs,
with i = 1,...,m, w;; are the weights, m the number of inputs, » the number of outputs, f the external
activation function. Then we can build an energy function? as follows.

E(w) = mazj=y,. n{Ir;(w)[} (1)

If we define wy as being the maximum error radius, wp > [71'J (w)];j =1, ..,n;wg > 0, the minimization
of the error becomes equivalent to the minimization of wp. This condition can be divided into 2
inequalities (restrictions):

gj1(w) = wg +1',(w) 20; gja(w) =wp —rj(w) 20; wg 20;5=1,..,n, (2)
where gj1, gj2 are notations.

In order to achieve a more robust representation, we develop a new energy function by applying the
standard quadratic penalties on the newly constructed restriction inequalities, and obtain:

E(w)-vwo+22{ (95, ()]-)* + (l9, ()]}, 3

with {y]- = min(0, y),u > 0,k > 0, Tonstants, Equation 3 states that the energy of the system
depends only on the maximum error radius wo, as long as the restrictions in 2 are satisfied. If not, the
terms g;;, gj2 also contribute to the error function. :

Let [y]- = y * S(y), where fory <0

0,
5@) ={ 1, rest

Sj1 = S(wo +r;) and Sjz = S(wg — 7;), then apply Gradient Descent reasoning. The weight changing
equations will look as follows
dw; ;
—=- (E(w)) = —ka 3 {(wn +75) S = (wo - 15) S} @)
j=1
Similarly, we obtain a movement equation for the maximum error radius, as follows:

dw
- =" (E(w "’”‘kyq{ wo +75) Sj1 + (w0 = 75) ja} ()
J=
The basic idea of this approach is that wg not only controls all the other errors, but also ensures
convergence by decreasing monotonously. If the maximum error(ME) radius will decrease, so will all
other errors contained in the error sphere. Which is more, the decreasing step is set by the decreasing
step of the ME, that can be adjusted in order to assure convergence.
We can rewrite the components that are added in the sums of equations 4,5 as:

nfinite Norm

2

error, or cost function



for i%i computation : wy + 7;(w), for r; < ~wp

(wo + rj(w))Sj1 — (wo — rj(w))Sj2 = 75 € [~wo, wo) (6)
—wy +71;(w), 1> wp

=

for ‘%‘;"- computation : wo + rj(w), forr; < —wp
(wo + 7(w))Sjr + (wo — rj(w))Sj2 = { 0, 7 € [—wo,wp) (M
wo —rj(w), r;>wp

Both movement equations are functions of r; and linear ramps of absolute slope 1 and dead-zone
[~wo, wo]. We interpret the obtained dead-zone delimiters as follows. ~

They both compare the maximal error with the other errors. The dead-zone linear ramp obtained
for w;; in eq.6 compares each error to the maximum error radius wy and establishes how the weights
should change in order to bring the errors inside the range of the maximal error, by prohibiting that
other errors become greater than the maximal one. Eq.7 for wy compares the maximum error to the
other errors, and tries to shrink the sphere, i.e., to adjust the maximum error wp in order to become
closer to the other errors. That is why wo can only become smaller, but r; must correct both deviations
in the negative and positive domain, so it can change both ways.

3 Backpropagation of Error

The designed net is a feedforward net based on the Lyapunov Gradient Descent NN. The simplest
net construction would be an 1 layer NN (1 input layer, 1 output layer) which isn’t enough for the
complexity of the analysed data. The next step is a 2 layer NN. Previous results (see for e.g. [6])
showed that a 2 layer net is enough (see [9] for a discussion upon network parameter selection).

We have deducted the weights’ changing equation in section 2, and we have established the net
design, subsequently we need to see how the weight changes will propagate for the different layers of
the network. :

The previously calculated weight changes can be used for the external layer. For the hidden layer,
we need a backpropagated error computation®, because we cannot compute a direct error, as in the
case of the external layer. .

The weight changes for the output layer can be deducted directly as being the ones in eq. 4, 5, with
the only difference of letting x; be h;, the hidden layer values.

By making an analogy to the backpropagation mechanisms, the weight (v ;) changes before the
hidden layer must be:

d . m+1' n
—;—:‘l = —kzif (Z 'u],,,'z[k] + vo,;) * Zw,-,j {(’IUn + Tj) Si1 — (wo — Tj)S'jz} s

k=1 i=1 ,
k=1,.,myi=1,.,p; (8)
and for the biases (v ;): v
dve ¢ [ n
ek —-kf (2 vk,iz[k] + vo_;> * 2 w;,j {(wo + r5) Sj1 — (wo — r5) Siz},
i=1,.,p 9)
with f being, forvinstance, the sigmoidal function, f(z) = ﬁ,a«e R, p the dimensi;)n of the

hidden layer and the rest of the notations the same as in section 2.

4 Implementation

The systeﬁi can pérforin training (learning) 'through weight computing, forecasting With a 2-la;yer
feedforward NN and can also serve as a user-interface. The designed program provides a full help
support at each step.

3

as in standard backpropagation



Iy
1
T
1
T
18
i1
T
T
¥
[
1}
T
T
1
1
!
T
[
1
Y

7
T
1
]
{
],
T
]
]
7
T
1
)
1
7
¥
¥
'
I

Figure 1: A ”perfectly” trained net

The prediction error is displayed in percentage to the maximum value (price) of the time-period (see
fig. 1). The data consists of some real-world data from [6], as well as some user-designed, synthetic
series for testing (see indications about the usage of real, realistic and synthetic data for algorithm
benchmarking in [8]). The data are values (prices on SE market) over any desired period of days and
are represented in fig. 1 on the Oy axis, scaled for a better representation [0-min; 1-max]. The Ox axis
represents the time. The considered time-period is usually a month, but the system can handle any
amount of input and/or output data, by using dynamic memory allocation functions.

For speed-up we used the step-changing method. The idea is that, if the convergence is following
a certain path for a given time-period, the step should be increased (step = 2 * step), and if the
computation tends to oscillate around a value, the step should be decreased (step = .5 * step), to
converge to the valleys of lower potential. This procedure requires less memory than the weight decay
method. This simple procedure has two consequences we observed: if the initial (random) weights are
far from the desired ones, then this procedure tends to determine a shorter convergence time; but if the
starting weights are close to the final ones, the net has a slight tendency of oscillation, till it finds the
correct combination, because of the rougher approach of bigger steps for a short time period.

5 Results

First we introduce the learning display. We present here a learning example of an equal share of 10
input data and 10 outputs (fig. 1). Out of 10 input daily SE values, 10 output daily values were to be
learned. The weight matrix dimension therefore had a 10x10=100 members dimension. The continuous,
zig-zag line on the left side of the graphical chart represents the past (or input) data, while on the right
side, the desired outputs* and the prediction can be seen. The prediction is normally displayed by a
dotted line, while the desired outputs are displayed by a continuous line® but here, with ”0” error, the
two outputs overlap, and therefore, a single line is visible. The program here displays the learning of
the correspondence of 10 past prices with 10 future prices. The outputs are scaled from 0 to 1 (Oy
axis), and the time (days) is represented on 0Ox. ‘

Of interest are: first, the display of the maximum error of the whole interval - represented in the
window by the exterior square - and then, the other errors, with lower values - represented by the lines
starting in the left corner of the picture and ending at the intersection with the second diagonal, on
which all the errors (including the maximum) are represented. In this way, the error structure can be

‘understood at'a single glance.

%as in Supervised Learning
3just like the inputs



17
16"

14

O SR usmoN® O

LRI I Ra kT E TR PIHMAPS A7 18 [19[20)27 (2272324125

o adjustiblestep v viceversa u
Better than conseant computation. tima

E

Figure 2: Variable and constant step; the influence on the convergence.

5.1 Adjustable step vs. constant step

We present here some results concerning the adjustable convergence step versus the constant compu-
tational step. These computations were performed on a small quantity of irregular, user-designed data
(fig. 2). The Ox-axis shows the number of input values, the Oy-axis shows the number of output-values.
The convergence step number would be on a 3rd axis, which is not represented. The step on both axis
is 1 day’s time. As can be seen in fig. 2, out of 300 random starting points, that we used for training
with constant step and then with a variable step, there were 165 input-output combinations for which
the adjustable step was better, and only 81 where the constant one showed better convergence. There
were also 54 cases in which the two types had similar convergence times. The most frequently used
pattern was the [20,10] one, so, 20 input values, 10 outputs {together adding up to a month=30 days).
It is interesting that, for this particular pattern, all test examples showed the adjustable step to be the
quicker converging one.

5.2 Algebraic indicator comparison

We used two coefficients for comparison:

o the correlation coefficient, that measures the linear correlation between the forecasted value Y5
and the real value b;:

R =1 (0 =) (5, -9
V5 0 =) [Ty (05— )

with 2/ = 2 357 | z; and n the number of observations (on the validation set).

(10)

e the t test or Theill coefficient, that measures the out-performance of the NN over the random
walk ( the predictor that estimates the future value as y;11 = b; + Eps;, i.e. the actual value plus
a white noise):

E;".—.i (w; - b.‘i)z

T.:

Vi (65 = i)’
If T < 1, the NN predictor is better than the random walk predictor.

Some average results over a number of 100 learning experiments (with error margin of 0.1, and
convergence time interval of 5-10 min.) are presented in fig. 3. ,
- We observed two methods: our method, versus the classical BP method. As can be seen in fig.3, we
have tested these coefficients on the trained set of data, and also on two test sets. The Theill coeficient
is best (lowest), as expected, in both cases, on the already trained set. The correlation. of prediction
and real value also are the best for this case (closer to 1). Except for the performance measure for

testl set (when compared to random walk) that has a higher value than the BP case (0.87.. when
compared to BP’s 0.85..), the rest of the values show that our method is superior: for the correlation

(11)

_5_



correlation perf. compared to

of set random walk

BXKP

trained 0.951364 - 0.447806
tastt 0.226734 0.853706
test2 0.308115 0.810235
modified Lyapunov

trained 0.960783 0.356597
testt 0.480251 0.871583
test2 0.511318 0.795510

Figure 3: Backpropagation and Lyapunov method’s behaviour regarding the algebraic indicators.

coefficient, the values are closer to 1, so there is a higher correlation between prediction and real values,
and for the comparison with the random walk, the Theill coefficient has lower values for the method we
proposed, when compared to the BP method. Furthermore, one of the similarities that appear is that
both methods tend to increase the weights during learning (if no momentum term is added). However,
the growth-rate is larger in the BP case, while our method seems to show a smoother pattern. These
results experimentally validate our theoretical energy function deduction and show that it outperforms
the classical BP algorithm (see [7] for experimental validation suggestions for NN algorithms).

6 Conclusions

In this paper we described the development and usage of an energy function that reduces the sensitivity
of the network in respect to minor errors, based on the Lyapunov infinite norm concept. From this
model, a NN was designed and a SE forecasting tool was constructed, using the TS behaviour of SE.
‘We compared, by using indicator comparison, the network constructed based on this energy function,
with a network using the classical Backpropagation method and showed the differences between the two.
For further work we intend to extend the system and find out what other problems it’s applicable to.

References
[1] Amari, S., et al.: Asymptotic Statistical Theory of Ovartmmmg and Cross-Validation, RIKEN, Japan,
METR 95-06, (1995).

[2] Ankenbrand, T. and Tomassini, M.: Multivariate time series modeling of financial markets with artificial
neural networks, ANN and GA, épringer Verlag, Wien, pp. 257-260, (1995).

[3] Anthony, M.: Probabilistic Analysis of Learning in Artificial Neural Networks: The PAC Model and its
Variants, Neural Computing Surveys, vol. 1, pp. 1-47, (1997).

[4] Cristea, A. and Okamoto, T.: NN for Stock Ezchange prediction; a Lyapunov based training. ICCIMA 98
Proceedings, Australia, (Selvaraj, H and Verma, B. (ed.)), World Scientific, pp. 416-421, (1998).

Dasgupta, D. and McGregor, D.R.: Designing Application-Specific Neural Networks using the Structured
Genetic Algorithm. COGANN-92 Proceedings, (Whitley & Schaffer (ed.)), IEEE Comp. Soc. Press, (1992).

[6] Komo, D., et al.: Neural Network Technology for Stock Market Indexz Prediction, ISSSIPNN 94 Proceedings,
Hong-Kong, IEEE, pp. 543-546, (1994).

[7] Lukowicz, P., et al.: Ezperimental Evaluation in Computer Science: A Quantitative Study, Journal of
Systems and Software, (1995).

[8] Prechelt, L.: Some Notes on Neural Learning Algorithm Benchmurkmg, Neurocomputing, (1995).
[9] Ripley, B.D.: Statistical Ideas fon Selecting Network Architectures NIPS’95 Proceedings, (1995).

5

—



