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GA Generates New Amino Acid Indices .
through Comparison between Native and Random Sequences

SATORU KANAI'* and HIrROYUKI ToHt

The amino acid sequence of a protein carries its folding information. If the information is encoded
by the arrangement of the amino acid residues along the primary structure, the random shuffling of the
residues would degrade the information. We developed a new method to compare the native sequence
with random sequences generated from the native sequence, in order to extract such information.
First, amino acid indices were randomly generated. That is, the initial indices have no significance
on the feature of residues. Next, using the indices, the averaged distance between a native sequence
and the random sequences was calculated, based on the autoregressive (AR) analysis and the linear
predictive coding (LPC) cepstrum analysis. The indices were subjected to the genetic algorithm (GA)
using the distance as the fitness, so that the distance between the native sequence and the random
sequences becomes larger. We found that the indices converged to hydrophobicity indices by the GA
operation. The AR analysis with the converged indices revealed that the autocorrelation in the native
sequence is related to the secondary structure.

1. Imtroduction

The amino acid sequence of a native protein folds
into a globular structure to exert its biological ac-
tivity. A statement known as Anfinsen’s dogma®
maintains that the information about the folding
of a globular protein is carried by the amino acid
sequence. If we extracted such information from a
sequence, we could predict the tertiary structure of
the sequence. However, we do not fully understand
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the relationship between amino acid sequences and
the corresponding 3D-structures of proteins.

One of the approaches to tackle this problem is
to find the orders or rules held by the amino acid
sequences. In the analyses, the sequences are trans-
formed into a series of numerical data. Such trans-
formation can be performed using amino acid in-
dices. An index is a set of numerical values, each of
which corresponds to a residue. Fach residue of a
given sequence is replaced with the corresponding
numerical value of a given index. Then, the se-
quence of a protein is expressed as one-dimensional
numerical value data, like time series data. Here-
after, the series of numerical values correspond-



ing to a sequence is called “profile”. The profile
has been analyzed by signal processing technique
in order to find periodicity or autocorrelation in a
given sequence. Some people insist that residues
are randomly arranged in the sequences of native

2~4)  However, other people have found

proteins
periodicity or autocorrelation in the sequences of
5)~10) Thus, the results obtained

from the various approaches are still controversial.

native proteins

Our method discussed in this paper is regarded
as solving an inverse problem against the current
signal processing approaches. We did not use any
of the known amino acid indices for the study.
Instead, we made a following assumption, in or-
der to obtain indices a related to the structural
information carried by sequences; if the informa-
tion about the folding of a protein is carried by
the arrangement of the residues along the primary
structure, then the information is degraded by the
Therefore, it
is expected to extract information related to pro-

random shuffling of the sequence.

tein folding through comparison of sequences of na-
tive proteins and the randomly shuffled sequences.
‘We connected the sequences of native proteins to
generate a long sequence, which we call the “na-
tive sequence” in this paper. For comparison, each
sequence constituting a native sequence was ran-
domly shuffled, and then was connected in the same
order as in the native sequence. The long sequence
composed of the shuffled sequences is called “ran-
dom sequence”. Besides, we prepared a large num-
ber of indices, whose elements were randomly gen-
erated. Using each index, the native sequence and
the random sequences were transformed into pro-
file data sets. The former is called “native profile”,
while the latter is called “random profiles”. Both
profiles were subjected to a autoregressive (AR)
analysis’?. Then, the distance between the na-
tive and random profiles was calculated, which is
known as the linear predictive coding (LPC) cep-
Using the distance as the fit-

ness of the index, the population of indices was

strum distance'®.

subjected to optimization by subjected to a genetic
algorithm (GA)'® as follows. The index with the
highest fitness in the final generation is expected to

distinguish the native sequence from the random

sequences efliciently.
2. Materials and methods

2.1 Preparation of native sequences and
generation of randomly shuffled se-
guences

The proteins used in this study were selected
based on the structure classification by CATH',
20 proteins were selected from the mainly o class.
21 proteins were selected from the mainly £ class.
39 proteins were taken from the a—f class. All
of the selected proteins satisfy the following struc-
tural conditions: (a) the sequence length is equal
to or greater than 100 residues, (b) each protein is
made of a single domain, and (c) no hetero atoms
or ligands are contained in the structure. A se-
quence length of a single protein was too short to
obtain enough samples for the AR analysis. That
is the reson why we connected sequences to form
a native sequence. We constructed three native se-
quences by connecting sequences belonging to the
same structural class. The length of the three na-
tive sequences corresponding to the mainly «, the
mainly 3, and the a—0 class were 3677, 3946, and
7050 residues, respectively. In addition, the three
native sequences were connected to form one more
sequence, which was referred to here as “all data”.
The four sequences were used as native sequences.
Corresponding to each native sequence, 100 ran-
dom shuffled sequences were generated, according
to the procedure described in Introduction. The
number of random sequences generated from a na-
tive sequence was 100.

2.2 Genetic algorithm to generate amino

acid indices

To solve the problem, the standard GA algorithm
was encoded into a program that can perform each
operation as follows.

Chromosome representation and initicliza-
tion: A chromosome indicates an amino acid in-
dex. That is, a chromosome is a set of 20 numerical
values, each of which corresponds to an unknown
feature of a residue. Each element of an index is
restricted in a range from 0.0 to 1.0. An initial
population was composed of 500 indices, whose el-
ements were randomly generated.



Distance between native and random pro-
files: First, a sequence is converted to a profile,
using a given index. Then, a profile is analyzed
as the univariate AR model. Finally, based on the
obtained AR models‘, the LPC cepstrum distance
betweem two profiles is calculated. The AR order
examined in this study ranged from 1 to 8, and the
order of LPC cepstrum was 15.

Reproduction: The raw fitness of chromosome
(I) A profile of a na-
tive sequence, P(z), is generated using a chro-

z is obtained as follows.

mosome z. Then, a set of random profiles,
{Pi(z),...,Pi(z),...,Ps(x)}, is generated by ap-
plying chromosome z to the set of random se-
quences, where S is the number of random se-
quences generated from a native sequence. (II) The
LPC cepstrum distance between the native profile
and a random profile i, D(P(z), P;(z)), is calcu-
lated. (III) The raw fitness of the chromosome z,
RF(z), is then calculated as

S
RP(@)= 1% 3 D(P@),Pi(z). (1)

For efficient selection, the raw fitnesses are further
modified by sigma truncation.

Elitism strategy: The top 1% of the reproduced
offspring are regarded as elite when the individuals
of the offspring are sorted by scaled fitness. The
elite population is transfered to the next genera-
tion, skipping the operation of crossover and muta~
tion. On the other hand, the remaining non-elites
are subjected to the following two operations.

Crossover: The uniform crossover operation is
adopted. The crossover probability is 0.1 in actual
runs.

Mutation: In this study a mutation means an
increase or a decrease in the value of an element of
an index by a given constant. The mutation prob-
ability is 0.1. 0.05 is used as the constant value for
an increment or a decrement. A generated random
integer determines whether the change is increment
or decrement. When the numerical value stored in
the element becomes greater than 1.0 by the incre-
ment operation, the value is re-set to be 1.0. Like-
wise, the value is re-set to be 0.0 when the value
becomes less than 0.0 by the decrement operation.

Judgment of termination: When the GA op-
eration is repeated by a given number, the program
is terminated. In many cases, 50 generations were
sufficient for the highest fitness in the population
to converge to a constant value. To ensure the con-
vergence, we added 50 more generations.

2.3 Evaluation of generated amino acid

index

To compare the generated indices with each other
or with known indices, the correlation coefficient
between two indices was calculated. Moreover, the
cluster analysis was performed using the absolute
values of the correlation coefficients as the distance
between two indices.A dendrogram was constructed
by the unweighted pair-group method with the
arithmetic mean.

3. Results and Discussion

In all of the cases of the evolution process, the
fitness converged rapidly. The converged indices
for the mainly o class, the a3 class, and all data,
were similar to each other when the AR orders are
> 2. For the mainly 3 class, except for the case of
the AR orders = 1 and 2, the indices were highly
correlated with each other.

The correlation coefficients were calculated be-
tween every pair of the indices and 434 known in-
dices available in an amino acid index database,
AAindex1'®. All of the indices, except for four
indices, showed high correlations not only to each
other, but also to the known indices, which are clas-
sified into a group of hydrophobicity indices. The
four exceptional indices included the one for the AR
order = 1 from the mainly « class, the one for the
AR order = 2 from the mainly 8 class, the one for
the AR order = 1 from the o0 class, and the one
for the AR order = 1 from all data. They did not
show prominent similarity to any of the known in-
dices. The relationship among the indices and the
known 149 hydrophobicity indices was examined by
a cluster analysis. The indices on a structural class
were similar to each other, despite the difference in
the AR orders. Reflecting the similarity, such in-
dices formed a cluster corresponding to each struc-
tural class in the dendrogram. The cluster on the
mainly o« class was distinct from the other clus-



ters, and showed high correlation with four known
indices classified into a group of hydrophobicity in-
dices. The cluster of the mainly 3 class was also dis-
tinct from the other clusters. The 19 known indices
belonging to the group of hydrophobicity indices
were close to the indices from the mainly 3 class
in the dendrogram, which were different from the
indices closely related to the cluster of the mainly
« class. The cluster of the a—f class occupied a
position between those of the mainly « and mainly
[ classes. This cluster was distinct from the other
two clusters, although it was relatively close to the
cluster of the mainly « class, rather than that of
the mainly 8 class. The cluster of the a~0 class
included that of all data.

The question addressed in this study was what
is the difference between native sequences and ran-
domly shuffled ones. We considered that such a dif-
ference is related to the folding information within
the native sequences. Our GA operation generated
indices related to the hydrophobicity. The results
suggested that the amino acid residues of proteins
are arranged in the primary structures with auto-
correlation in hydrophobicity.

The next question is how native sequences are
designed in hydrophobicity. The sequences were
expressed by the AR models, each of which is char-
acterized by the corresponding AR coefficients. We
expressed the native sequences as AR models using
the converged indices, and examined the relation-
ship between the AR coefficients and the structural
class of the sequences. As a result, for the mainly
« class, the pattern of the AR coefficients is consis-
tent with the periodicity of an « helical structure.
Likewise, the AR coefficients of the native profiles
of mainly 8 class represented the preiodicity of 3
strands. Moreover, for the a—0 class and all data,
the pattern seemed to be a mixture of that for the

mainly o class and that for the mainly 8 class.
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