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Abstract  This paper investigates power-law distribution exhibited by cellular automata based on signal con-
servation logic (SCL) and proves its theoretical exactness. SCL is a model of logic for the physical world subject
to the matter conservation law. Power-law distribution is caused by a kind of discrete relaxation via some logical
transformations of white noise. The proposed model gives us various insights into this law including: (1) power-law
distribution is generated by positive logic, which means its irrelevance to computational universality in the sense
of elemental universality, (2) context-free grammar can generate power-law distribution, (3) a hypothetical model
for 1/f spectrum, (4) relation between discrete power laws caused by perfectly inelastic collisions and the entropy

problem.

1 Introduction

A problem variously called such as power law, 1/ f noise,
scaling law, Zipf’s law, Pareto distribution, and pink
noise is investigated. The 1/f noise was discovered by J.
B. Johnson in 1925 [1]. Similar power-law distributions
appear in word frequencies found by G. K. Zipf [2] and in
many physical, biological, and social phenomena includ-
ing fractals and V. F. D. Pareto’s discovery concerning
income distribution {3, 4, 5, 6].

We still do not know the very origin of this famous

law. Since the Pareto distribution, ak®z~ @+ is de-

_fined for a > 0, the true 1/ f distribution cannot exist in
mathematical meaning. Simply speaking, it is because
the integral of 1/f gives infinity.

This paper focuses on 1/z-type power-law distribu-
tions that have a power exactly —1. Here = does not
necessarily mean frequency and the function form is gen-
erally 1/(az + b). The signal conservation logic (SCL)
proposed by the author [7] is employed to prove an exact
power law exhibited by cellular automata.

Since positive logic can generate 1/z-type distribu-
tion, in general it has no connection with elemental uni-
versality, a kind of computational universality proposed
by the author as a basic law for life and intelligence
(7, 8, 9, 10].

For definitions of SCL, see Inagaki [7].

2 Collision Automaton
Here we shall define a very simple cellular automaton
based on SCL. We easily know that the simplest SCL
element is z; = z1, which is trivial. The second simplest
SCL element, B, is defined as: z; = z; + T2, 22 = T123.
We call this SCL element the collision gate or collision
cell.

We construct a one-dimensional cellular automaton
by repetitive use of the collision gates. Bach gate B;

has a unit delay. We call this automaton the collision
automaton. At time t, the inputs and outputs of cell B;

are expressed by x('. and zm Then w(t) =2, and
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From these values Z;
step wxll be calculated. Namely, the neighborhood of cell
B; contains only two cells B;., and Bj.

The number of cells B; in a one-dimensional cellular
automaton is generally unbounded in left and right di-
rections. Here we consider a collision automaton only in
the region j = 1,2,--,n, i.e., bounded in both direc-
tions.

At time —-1 initial inputs to these n cells are applied
such that ::; -b and :c( Y are random numbers 0 or 1
with equal proba.bxllty 1 / 2. The input patterns to cells
are (0,0),(0,1),(1,0), and (1,1) with equal probability
1/4. The cells outside this region are all assumed fed by
(0,0).

Note that the average Hamming weight of the input
vector for a cell in this region is approximately 1. This
property is conserved at any time, except the signal flow
at both boundaries of the region.

Input-output transformation by a cell itself is:
(6,0) — (0,0);(0,1),(3,0) = (1,0);(1,1) ~ (1,1).
Each cell takes on one of (0,0),(1,0), and (1,1) at each
time step, which means the cell is a three-state machine.
The cells at time 0 and afterwards have these values.

We regard state (1,0), whose Hamming weight is 1,
as a basic state of this cellular automaton. It is easily
known that, if B; assumes (1,0) at time ¢ and its neigh-
borhood cell Bj..1 assumes state (0,0) or (1,0), then B;
remains (1,0) at time ¢ + 1.

In Fig. 1, binary vectors (0,0),(1,0), and (1,1) are
represented by 0,1 and 2, respectively, i.e., the Hamming
weights of the vectors. The cells outside this region are

omitted by regarding them as assuming state 0, namely,
state (0,0).
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Figure 2: A Pattern exhibited by a collision automa-
ton.

Fig. 1(2) shows the behavior of a state 0 surrounded by
states 1’s. It remains 0 without any interaction with 1’s.
Fig. 1(b) depicts the behavior of a state 2 among states
1’s. It moves right step by step with time. Then Fig. 1(c)
shows the interaction between states 0 and 2 surrounded
by 1's. These two states collide with each other and at
last vanish. Since states 0 and 2 proceed solely straight
and then eventually collide, this automaton is named
collision automaton.

A pattern exhibited by a collision automaton is exem-
plified in Fig. 2. This pattern is generated by a finite
128-cell automaton, and the signals outside this region
are assumed to be 0’s.

In this figure, slanting lines correspond to state 2's.
Vertical dotted lines represent state 0’s. The background
white region means basic state 1’s.

Triangles constructed by slanting and vertical lines are
seen in this figure. Smaller triangles are contained in a
larger one, and they never intersect with each other.

The initial assignment of this automaton happens to
contain one excessive state 0, which corresponds to the
rightmost vertical line. This state 0 does not collide with
any state 2. However, if the automaton is unbounded to
the left and the cell states are randomly assigned, some
state 2 will at last collide with this state 0.

Similarly, if the number of state 2’s is excessive and the
defined region is finite, excessive 2’s will eventually get
out of the bounded region. However, if the automaton is
unbounded to the right and the cell states are randomly
assigned, some 0’s will eventually collide with such 2’s.

3 Power Law Exhibited by

Collision Automata
Although the self-organized criticality caused by cellular
automata {12] shows patterns very similar to the 1/z-
type power law, complete proof has not been reported.
Here we can give a proof of an exact power law.

Let k be the length, or the duration time, of a state
2 that gradually moves with time and at last vanishes
by collision with a state 0. The lengths of 2 and 0 that
collide are equal.

Let state 2 correspond to symbol ‘+1°; and state 0 to
symbol ‘-1, State 1 is omitted as a null symbol. Then
we can regard the initial state assignment to a collision
automaton as a random ‘41’ and ‘—1’ sequence, where
the symbols ‘+1’ and ‘—1’ occur with equal probability.

Assume that the first symbol is ‘+1’. If the next sym-
bol is ‘—1’, they collide. The collision condition is easily
understood: when S, the arithmetic sum of +1’s and
—1’s, becomes 0 for the first time, collision with the first
symbol ‘+1’ takes place.

We employ a coordinate system (7, S) such that j is
the number of symbols in a sequence and S is the sum
above mentioned.

When k ‘4+1’symbols and k ‘—1’symbols are arranged
in a sequence, the number of possible paths from (0,0)
to (2k,0) is No = C(2k,k). Here C(n,r) means the
number of combinations of r from n objects. Similarly,
the number of all paths from (1,1) to (2k,0) is N1 =
C(2k - 1,k).

‘We want to obtain the number N of paths from (1,1)
to (2k,0) that do not touch or cross the j-axis except
the last point. We divide such a path into two parts: a
path from (1,1) to (2k — 1,1) and that from (2k — 1,1)
to (2k,0). Since the number of latter paths is 1, N also
means the number of possible paths from (1,1) to (2k —
1,1) that do not touch or cross the j-axis.

Such numbers of paths are usually analyzed in random
walk theory. We apply such theory to this problem. The
reflection principle quoted in W. Feller [11] (Vol. I, Chap.
III) can be utilized.

This principle regards the j-axis as a mirror. Then
we can know that the number of paths from (1,1) to
(2k — 1,1) that touch or cross the j-axis is equal to the
number of all paths from (1, ~1) to (2k — 1,1), which is
Ne = C(2k — 2,k).

Theé number of all paths from (1,1) to (2k — 1,1) is
Ny = C(2k — 2,k —1). Then N is calculated as follows:

N = N:—N,
= No—(k—1)Na2/k
— Mk )

The number Ni of all paths from (1,1) to (2k,0) con-
tains the paths that go through (2k—1, —1), the number
of which is again N,. Then,

N = N;-2N,
= Ni—2(k—-1)N:1/(2k—1)
= Ni/(2k-1). 2)

Since Ng = 2N;, the relation between N and Nj is:
N = No/2(2k — 1). (3)



In an unbounded sequence composed of symbols ‘+1’
and ‘—1’, subsequences of length 2k occurs substantially
the same times for any k. For example, from coordinates
(0,0) we have sequences of any length k. Hence the
probability of the collision of length k is mathematically
proportional to 1/(2k — 1).

In patterns generated by the collision automata, state
1’s are randomly scattered among states 0’s and 2’s.
Such states do not affect the power-law property, if only
they are thoroughly randomly scattered. Or we may not
assign such states to the collision automata. States ‘1’
are used to make Fig. 2 easy to be observed. The fol-
lowing theorem holds:

Theorem 1 The collision automaton exhibits
power-law distribution whose power is —1.

the

Computer experiments of collision automata make a
good accordance with this theorem.

4 Discussions

Mathematical Reality but Physical Approxima-
tion: The equation (3) is a mathematical reality. If
collision cells are placed boundlessly in both directions,
the power law holds as a theoretical reality. Such an
unbounded cellular automaton will be classified as a so-
called open system. .

However, a mathematical difficulty is associated with
such infinite systems. The Pareto distribution, or any
legitimate distribution, cannot be defined for power —1
in spite of doubtless existence of such distribution.

If the number of cells is finite, the power law must
be regarded as a mere approximation. Such a cellular
automaton is definitely a closed system, and can be re-
garded as a physically plausible system. Such finite sys-
tems can by no means exhibit real power laws.

Some discrepancy between mathematics and physics,
or between finiteness and infinity, may exist in this prob-
lem. We do not have enough mathematical tools to in-
vestigate such infinite or open systems as yet. See also
the author’s discussion about the mismaiching between
mathematics and physics [10].

Positive Logic and Nonlinearity: We should pay at-
tention to the logic realized by a collision gate. The gate
realizes OR and AND. They are both positive functions.

It means that the collision cell cannot realize NOT
function. Thus collision gates are not sufficient parts to
construct a universal computer.

The collision gate does not have elemental universal-
ity [8, 9, 10, 7], a kind of computational universality
proposed by the author. He hypothesizes that biologi-
cal life is based on the elemental universality. If so, the
power law may not be a principal law of life, although
deeper discussions must be done continually.

OR and AND are classified as nonlinear functions in
elemental universality theory. The author thinks that

linear functions (i.e., exclusive OR’s, typically) never

exhibit power-law distributions because of their charac-
teristics. It means that the power law is a nonlinear
property.

Relation to Context-Free Grammars: If we change
the state 2 to a symbol ‘(* and the state 0 to a symbol

‘)’, then the theory can be interpreted as ‘grammar of
parentheses,” which belongs to context-free grammars.

It means that context-free languages can exhibit
power-law distributions. The following rewriting rule
generates all legal sequences of parentheses: § -
S5 |(S5).{ (), where S is a nonterminal start symbol and
| means ‘or’. This rule already contains the constraint
that the probabilities of ‘(* and ’)’ are equal.

The symbol immediately after the symbol (* must be
Y’ or ‘)’ with equal probability. Then the occurrence
probabilities of (S)’ and ()’ must be equal, because ‘(5)’
eventually produces ‘((’.

We can know that ‘SS’ will eventually produce ‘)’
and that ‘(5)’ will produce ‘))’. The symbol immediately
after ‘)’ must be ‘(’ or ‘)’ with equal probability.

Thus we obtain the result that the rules ‘SS°, (S)’,
and ‘()’ must be used independently with probability
1/3.

We can conclude that some origins of the power law
are equal to context-free grammars, which are not so
powerful as Turing machines.

Noise Transformation: The collision automaton tells
us a typical mechanism that causes power-law distribu-
tion:

1. The seed of the power-law distribution is noise, in

particular, the white noise.

2. Noise is transformed by some logical, or equiva-

lently logical, functions.

3. The logical functions are not combinational but se-

quential, i.e., utilize some memory effect.

4. The logical functions may not include negations,

but must be nonlinear.
Various simple models of power-law distributions have

been proposed, such as an infinite ladder model consist-
ing of resistors and capacitors [14] (an infinite ladder
circuit has square-root impedance). However, many of
those models do not necessarily present us a clear image
of this law. The author thinks that the collision automa-
ton model is a comparatively good one that can give us
various new insights into this law.

Discrete Relaxation with Stable Distribution: We
will be able to think of the power law as a kind of discrete
relaxation process [5, 10]. The fact that the number of
trees in graph theory follows an exact 1/z-type power
law [13] will strengthen this hypothetical view.

Continuous relaxation usually exhibits an exponential
function with a finite time constant. On the other hand,
discrete relaxation often exhibits power laws.

If so, various concrete examples of power laws ob-
served in physical and logical systems may be so impor-
tant clues to investigate discrete phenomena in nature
that we should not make little of them.

However, the power-law distribution belongs to a class
called the stable distribution [11], in which the sum of
independent random variables also follows the same dis-
tribution under the transformation of parameters.

It means that the power law is somewhat simple be-
cause such random variables have linear characteristics.
The discussion about positive logic also makes us suspect
the simplicity inherently associated with this law.

We know that power-law relaxation is very ubiquitous
in our world. The author thinks that it is simple because



it is so ubiquitous. For example, the domino automaton
[7] exhibits approximately z~*/3-type power-law distri-
bution. The author would like to propose the next con-
jecture: the power law (with the power —1) is caused by
discrete phenomena or some discretizing process. |

A Hypothetical Model for 1/f Spectrum: We shall
consider an important problem, mechanism of the 1/f
spectrum.

The collision automaton is a collision model that can
be expressed by a metaphor ‘grow gradually or die at
once’ principle. We can obtain a hypothetical explana-
tion of 1/f noise in electrical circuits.

We analyze the collisions of electrons against posi-
tively charged atoms in a solid sample under uniform
electric field E. The electric field accelerates electrons,
and the kinetic energy of an electron grows gradually.
Such kinetic energy of electrons is transformed into har-
monic oscillations of atoms by sudden collisions.

In Fig. 2, we regard the state 0 as a charged atom,
and the state 2 as an electron. The vertical axis means
quantized kinetic energy K of an electron. The horizontal
axis means length ! in the direction along E. Charged
atoms are fixed at constant positions.

Let m: electron mass, q: electron charge, and v: elec-
tron velocity. An electron with initial velocity 0 at posi-
tion O obtains velocity v = ¢Et/m at time ¢ and arrives
at position | = ¢Et?>/2m. The kinetic energy K of an
electron is ¢? E*t* /2m. Then we obtain

K = qFEl, or AK = gEAI (4)

The relation between K and [ is linear. This prop-
erty conforms with the electron behavior in Fig. 2. The
difference equation form in (4) tells us a fact that the
moving length of an electron is constant with respect
to its quantized kinetic energy. Note that the collision
probability of an electron is proportional to its moving
length. Thus such collision probability is constant with
respect to the quantized kinetic energy of an electron.

Coulomb’s force F' between an electron and a charged
atom (positive ion) is proportional to r 2, where r is the
distance between them. If the centrifugal force K/2r <
F,ie., K < C/r for a constant C, then an electron will
collide with the atom. Let Kj = C/rk, where K means
quantized energy and 7, the collision radius.

An electron in rectilinear motion collides with an atom
with probability proportional to 772, the cross-sectional
area. Let K7k be the total sum of the kinetic energy K
associated with the electrons within collision radius 7.
Then Kpy o r2C/rs = Cri, and consequently

K K7y = constant. (5)
Since f is generally proportional to quantized energy,
we can surmise the following 1/f-spectrum law in the
light of equations (4) and (5):
frK7r = constant. (6)
Entropy Problem: Shannon’s entropy of the collision
automaton at time 0 is easily calculated as 1 bit/cell. In
equilibrium, it decreases to 0 bit/cell. This model may
lead us to an idea that ‘perfectly inelastic collisions can
decrease the entropy of a physical system.’
The second law of thermodynamics asserts that heat
cannot be taken in at a certain temperature and con-

verted into work with no other changes in the system or
the surroundings. The above observation does not con-
tradict this law, because the system has changed. Inelas-
tic collisions convert part of kinetic energy into thermal
energy.

Theory of entropy in statistical mechanics, however,
may not be well formulated. Consider an isolated adi-
abatic system with only two particles, 1 and 2. The
energy of the system is conservative. If ergodicity is as-
sumed, the particles at last unite by a perfectly inelastic
collision. The system changes (ergodicity is broken).

According to Boltzmann, entropy with respect to the
positions and the velocities of particles decreases from
Hoi to Hoz, where Hoz = Hoi/2. The degree of in-
ternal freedom of the particles changes from n, + ny for
particles 1 and 2 to ng for a combined particle 3. If the
entropy of the total system has increased, it must be kept
in the internal freedom of the combined particle. Then,
if the spacial volume of the system is different, should
we think that different amount of entropy is held in in-
ternal freedom? Or can we discuss only about ensemble
average?

In this system, irreversibility originates from inelastic

collisions. Order emerging from disorder, e.g., seen in
the creation of stars, planets, and galaxies in the big-
bang universe, is a result of such collisions. The author
is now interested in the relation between apparent order
brought about by inelastic collisions and the entropy of
such systems.
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