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One of the applications of the Voronoi diagram is to model actual patterns. It is important
to ask how close a given pattern is to the Voronoi diagram. Actually, if we can measure the
closeness quantitatively, we can analize the models in more detail. In this paper, we focus on
one of existing methods. This method is comparatively easy to deal with. But it has a defect.
This paper modifies the method and gives an intuitive interpretation of the method. It also
argues about the solution to the defect.
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1 Introduction

The Voronoi diagram [6] is applied to var-
ious fields, especially to engineering. One
of such applications is to model actual pat-
terns with the Voronoi Diagram. In fact,

there are many patterns regarded as close
to the Voronoi diagram [7] [8] [9] [10] [11]
[12] [13] [14] [15]. In this context, it is im-
portant to ask how close a given pattern is
to the Voronoi diagram. Actually, if we can
measure the closeness quantitatively, we can
analize the models in more detail; for exam-
ple, we can discuss whether the pattern has
inhomogeneity in directions or in strength of
each cell. Examples of patterns considered in
practice are a cross-section of a cluster of cells
[71[8] [9], territories of animals or plants [10]
[11] [12], cracks of a rock [4] and an admin-
istrative district such as an electoral district
[3]. It is easy to execute this kind of simula-
tion because it is not necessary to deal with
a complicated topological structure of a pat-
tern.

In Section 2, we define the Voronoi dia-
gram. In Section 3, Voronoi fitting problem
is formulated. In Section 4, some existing

pretation of the method in Section 5. It also
argues about the solution to the defect in the
same section. Lastly, some conclusions and
discussions are given in Section 6.

2 Voronoi Diagram

In this section, we define the Voronoi diagram
[6] in the 2-dimensional plane. Given a set of
n distinct points {P;(z;, %) | ¢ = 1,2,...,n}
in the Euclidean plane, we associate all loca-
tions in the plane with the closest member
of the point set. ‘The result is a tessellation
of the plane into a set of regions associated
with members of the point set. This is called
the planar ordinary Voronoi diagram gener-
ated by the point set. Figure 1 is an example.
The members of the point set are called gen-
erators. The region associated with a mem-
ber P; is denoted by V(P;) and is called the
Voronoi polygon associated with P;.



Figure 2: Example of Voronoi fitting problem

3 Voronoi Fitting Problem

In this section, we define the Voronoi fitting
problem. At first, we define a tessellation,
which will be the input to the Voronoi fit-
ting problem. Let R be a bounded planar
region such as a square. A set of regions
{Rili=1,2,...,n}, where R = ;o;  ,Ri
and [RiNR;| =0 (V4i, Vj#1),is called
a tessellation, provided that the notation | |
means the area of a region.

Then, the Voronoi fitting problem is the
following. Given a tessellation {R;}, arrange
unknown n generators { P;} so that the Voronoi
diagram generated by the generators is close
to the given tessellation. In figure 2, chained
lines represent the given tessellation, solid cir-
cles represent generators calculated by some
method and solid lines represent the Voronoi
diagram generated by the generators.

Although the meaning of “close” is am-
biguous in the above definition, it is strictly
defined for each method in the following sec-
tions.

4 Existing Methods

In this section, some existing methods of solv-
ing Voronoi fitting problem are reviewed.

4.1 Voronoi Recognition Problem

Some methods of solving a slightly different
problem, called Voronoi recognition problem,
have been proposed (1] [2] [5]. Because these
methods give only the decision if a given tes-
sellation is a Voronoi diagram precisely or
not, that is to say, give no measure of close-
ness to the Voronoi diagram, they don’t seem
to be useful in practice. But they gave this
paper some useful hints.

Some paper has utilized the necessary and
sufficient condition that a given tessellation
is a Voronoi diagram [5]. The necessary and
sufficient condition is that we can select gen-
erators satisfying the following conditions.

e Every generator is in the associated re-
gion of the given tessellation.

o Every edge in the given tessellation is
the perpendicular bisector of the line
connecting the generators associated with
the regions on both sides of the edge.

This necessary and sufficient condition is uti-
lized in Section 5 in this paper again.

4.2 Minimizing Area of Discrepancy

An iterative method of minimizing the area
of discrepancy of a given tessellation and the
Voronoi diagram generated by unknown gen-
erators has been proposed and the method
has been applied to the analysis for adminis-
trative districts [3]. This criterion seems to
be the most acceptable. Although the solu-
tion is guaranteed to be only a minimal one,
it is useful enough in practice.

5 P-B Method

The fundamental idea of the method, called
P-B method in this paper, has been proposed
[4]. It utilizes only the second condition in
Subsection 4.1. That is the defect. But it
has some merits. First of all, it’s easy to deal
with in the sense that it’s not necessary to
consider the topological structure of a given
tessellation. Furthermore, it’s not necessary
to use an iterative method like the method
in Section 4.2. This paper proposes modified



P-B method in Subsection 5.1, gives a new
intuitive interpretation of it in Subsection 5.3
and argues about the solution to the defect in
Subsection 5.4.

5.1 Modified P-B Method, Perpen-
dicularity and Bisectability

At first, we define non-perpendicularity and
non-bisectability (See Figure 3). Let V;; and
V;; be the end points of the line separating
R; and R; in the given tessellation so that
the left side of the half-line V;;V5; is Ri. P]’-
is the reflection of P; in the line V;;Vj;. For
a given tessellation and unknown generators,
non-per-pendicularity p and non-bisectability
b are defined as
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respectively, where A is the set of couples of
indices of regions adjacent to each other in
the given tessellation, and m is the number
of members in the set. The notation AABC
means the signed area of a triangle, which
is positive if the path ABC turns left. Both
sides of Equations (1) and (2) have the di-
mension of square of area. The coefficient
|R|?> was decided so that similar magnifica-
tion of the given tessellation has no effect on
pand b. Then, we can formulate the problem
as an optimization problem whose objective
function is

f=QQ-kp+kb (3)

and will be minimized, where k is a fixed real
number satisfying 0 < k£ < 1. We call & im-
portance of bisectability. It is expected that
we can get more detail information, which
is non-perpendicularity and non-bisectability
in addition to closeness to the Voronoi dia-
gram, by means of applying this method with
various values of k& to an actual tessellation.
This problem is solved comparatively easily
because minimization of the objective func-
tion is reduced to the method of least squares.
Then we can use the minimum value of the
objective function f in Equation (10) as the
measure of closeness to the Voronoi diagram.
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Figure 3: P-B method

5.2 Existing P-B Method, 7 Value

There are 2 differences between the method
above and the existing one. One of the dif-
ferences is the objective functions. The other
is the adopted measures of closeness to the
Voronoi diagram.

The existing P-B method adopts other op-
timization problems, although it uses p and
b [4]. Furthermore, it does not adopt f in
Equation (3) but another measure, named 7
Value [4], as a measure of closeness to the
Voronoi diagram.

5.3 New Intuitive Interpretation of
P-B Method

The second condition in Subsection 4.1 means
that P/ coincides with P; (See Figure 3 again).
A slightly different method considered in this
subsection lets the objective function be the
appropriately weighted mean value of the square
of the length P;P} over all vertices in the
given tessellation.

This objective function is easier to visual-
ize than that in Subsection 5.1. However, in
fact, the objective function here is completely
equivalent to that in Subsection 5.1 where the
importance of bisectability k is 0.5. After all,
this interpretation has the same meaning as
visualization of the measure of closeness de-
rived from P-B method in Subsection 5.1.

5.4 Method Utilizing Convex Quad-
ratic Programming

In fact, P-B methods above do not consider
the first condition in Subsection 4.1. So, gen-
erators calculated by P-B method can be out-



side the associated regions in a given tessel-
lation [5].

In order to avoid this kind of undesired so-
lutions, this paper proposes to adopt the idea
of optimization problem with constraints. Con-
cretely, we minimize the objective function
in Equation (3) with the constraints repre-
senting the first condition in Subsection 4.1.
Then, we obtain a convex quadratic program-
ming problem. As is well known, convex quad-
ratic programming problems can be solved ef-
fectively.

6 Conclusions and Discussions

Some conclusions and discussions are given
as follows.

e We have modified P-B method slightly.
Then, it is expected that we can get
more detail information by means of ap-
plying the method.

e We got an intuitive interpretation of the
objective function of P-B method.

e This paper has proposed to adopt con-
vex quadratic programming in order to
avoid the defect of P-B method.
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