¥EET)AL & BERR 30— 5
(2000. 6. 26)

Collaboration of Parafrase-2 and NaraView
for Effective Parallelization Supports
Mariko Sasakura I Umpei Nagashima °

Kazuki Joe *

Masayo Haneda *
Yoshitoshi Kunieda ¥

* Nara Women’s University T Okayama University
° National Institute for Advanced Interdisciplinary Research ¥ Wakayama University

To use parallel computer systems effectively, users need to reconstruct their sequen-
tial applications into parallel programs, and such parallelization is not easy work for
general users. Parallelizing compilers were developed to solve this problem, but it is
still quite difficult to parallelize applications correctly, efficiently, and automatically.
For this reason, some parallelization support tools are desired. NaraView, as one
of the support tool, visualizes 'a given program by extracting internal information
from a parallelizing compiler Parafrase-2. In this paper, we validate the usefulness
of NaraView by parallelizing a real application.

NaraView @ Parafrase-2 & OEHEIZ BT 3 R WF ML=

PH BR* #H FEFT KRB BE°
Bif: w|ECF W FE

* WREFRET MILKE
° EERETANEA SRR AT F Fdk LR

WFIEEMEPROIERATEEDIC, 77U 75— s v OUIHLE BB TIT) B9
WEHE T A FTHRAREN TV EH, ZIVERAVWTS IERETHRIREIULET S
SO TELY. oo EBS kA I, ZOEREXET LY —
BRSNS Z LBV, e h, ZHETICHEEL TV SRR Y —
NaraView (I35t /31 J Parafrase-2 268/ 5115 PHIRAOCERZMHL, &
2oNeTa 7 LAORFMEITD. ZRTEIET TV r—a rOWFHbzE LT

NaraView O & D BERRERIZOWVTRRS.

1 Introduction

Recently, parallel computers have become
commonly used and have taken the place of ex-
pensive vector-processor based supercomput-
ers, however many numerical calculation users
still rely on vector processor computers. It is
hard for these users to reconstruct their con-
ventional numerical applications into a form
for scalar-parallel computers. This lead to
the development of parallelizing compilers that
transform sequential programs into a parallel
form automatically. Parallelizing compilers an-
alyze programs for efficient parallelization, but
the compilers can not yet find optimal trans-
formations. Therefore, the user must specify
the transformations to be applied. .

We developed NaraView[4] as a paralleliza-

tion support tool for Parafrase-2[3] which is
a parallelizing compiler developed at the Cen-
ter for Supercomputing Research and Devel-
opment of the University of Illinois at Urbana-
Champaign. NaraView visualizes the hierar-
chical task graph (HTG)[1], the intermediate
representation of Parafrase-2.

In this paper, we parallelize a real applica-
tion and compare the results of three paral-
lelization methods: with the default passfile,
with a passfile generated by using information
from NaraView, and with hand optimization
on the source code as well as the modified pass-
file. Then, we will show the efficacy of visual-
ized program information for parallelizing real
applications with NaraView.

We use the extended Huckel calculation pro-

gram that is one of the program for chemical
calculation written in Fortran77 as the real ap-
plication. The application consists of 8 subrou-
tines. We select the subroutine hoqrv2.f that
does most of the calculation because the other
subroutines are quite simple.

The organization of the paper is as follows.
Section 2 introduce to NaraView. In Section 3,
we parallelize the application with Parafrase—2
and NaraView. Finally, the result of the par-
allelization are evaluated in Section 4.

2 NaraView

NaraView[2] is a program visualization system
for parallelizing compilers. It visualizes source
codes obtained from the Parafrase-2 paralleliz-
ing compiler for the support of parallelization.
NaraView consists of the four following views:
Program Structure View

Source Code View
Hierarchical CFG View
Data Dependence View

3 Parallelization with Nar-
aView

In this section, we demonstrate the paralleliza-
tion of an application program with Parafrase-
2 and NaraView.

3.1 Parallelization with the default

passfile

First, we use the default passfile that is at-
tached to Parafrase-2 to parallelize the appli-
cation. The program that is parallelized by
Parafrase-2 with the default passfile is visual-
ized by NaraView as shown in Fig.1. In Fig.1,
two loops are transformed into a parallel form.

A

Y! Paraitel

Loop Leve!

Figure 1: Program structure view

3.2 Parallelization with a Modified

assfile
We modify the default passfile using the infor-
mation obtained from NaraView. The result of
the investigation suggests effective transforma-
tions for each loop that is not yet parallelized.

For example, the loop of line-13 is taken
from them. The data dependence viewis shown
in Fig.2. The characters shown in the figure
correspond to variables of the program. The

#w

. Writes

o

%

Figure 2: Data dependence view(line-13)

view indicates that there is a loop-carried de-
pendence at variable s. s is a scalar variable,
because cubes that express variable s are ar-
ranged vertically to the zy-plane. If the shape
of the vertical poll is turned into stairs, the
statement including s would be parallelized.
This transformation is known as scalar ex-
pansion. In this case, scalar expansion can
be applied to s. Because the cubes that express
variable e are arranged like stairs, it indicates
that e is an array. The poles between adjacent
cubes represent true dependence in each loop
iteration. The two accesses that cause the de-
pendence appear at different statements in the
loop. Because the dependence is a true depen-
dence, these statements can be distributed to
different loops. After loop distribution, they
can each be parallelized.

In the same way, we apply such techniques to
other Joops and add these two transformations
into the passfile.

We parallelize the program with the new
passfile and visualize the result with NaraView
again (Fig.3).

We find that two more loops can be paral-
lelized, the loop of line-13 and the loop of line—
69, by using loop distribution. In this case,
parallelization by scalar expansion seems not
to be effective. The rest of the non—parallelized
loops should be examined with other kinds of
transformations to gain more parallelism.

3.3 Parallelization with hand opti-
mizations

We find loops to be parallelized, while it is dif-

ficult to parallelize them with Parafrase-2 only.

Therefore, we modify the source code directly

to eliminate data dependence.

Y: Paralielizm

7: Loop Level

Figure 3: Parallelization with the modified

passfile

We next look at the loop at line—21, because
this loop is the first loop investigated in Sec-
tion 3.2. In the section, it was expected all
statements in this loop would be parallelized.
The data dependence at this part is shown in
Fig.4. At first, we recognize that there are true

& cptmp_346
. Read /
. - Write

w5

TUeX Y Variable

Figure 4: Data dependence view(line-21)

dependencies on array e, and the dependence
can be eliminated by re-arranging each state-
ment in the loop to belong to different loops.
Although we have added loop distribution
to the passfile, the loop distribution func-
tion of Parafrase—2 does not recognize the loop
to be fully distributable. Therefore, we modify
the source code to distribute the loop and to
generate two separated loops. By the modifi-
cation, one of the loops is parallelized, but the
other loop is still not parallelized. The latter
loop has a loop-carried dependence, and it re-
quires more modification of the source code to
be parallelized.

But the modification produces one more
loop for the calculation of the summation. It
is difficult to determine whether the modifica-
tion is effective, because it relies on the execu-
tion -overhead of the added loop. We did not
modify this loop for this reason. The data de-

XY Variable

DO 348 i = k + 1,n 84
a(i,k) = alk,i) * h 85
348 CONTINUE 86

Figure 5: Data dependence view(line-84)

pendence view shown in Fig.5 shows that the
loops at line-84,103, and 118 do not have any
data dependencies that prevents paralleliza-
tion. Since Parafrase-2 does not recognize the
above loops, we modify these loops to be par-
allelized. In the same way, we parallelize the
rest of non—parallelized loops. Finally, we ob-
tain the parallelized program.

4 The Effect of Visualization

In this section, we validate the parallelizations
applied in Section3.

At first, we compare the program structure
view of the final parallelized program shown

_in Fig.6 and the program structure view of the

program parallelized with the default passfile.
The comparison of them with Tablel shows

1 Parallelizm

i
IR i L]

ffigure 6: Parallelization with hand optimiza-
ion

Section 3.1 | Section 3.2 | Section 3.3
line-13 | 30=21n=6 [2 L 9p _g | 5(n—2)
line-69 | n2 —n—1 1‘—2:—21";1- 2

Table 1: The number of loop iterations
the increase in parallelism. To understand the

O toop(line 22) Loop(line 25) .
AR - LOOD(‘}DG 9\ " ﬂ“g ;t

Loop{line 13) . owio

D010 j =k + 1,n
w(j,1) = 0.d0
o(j) = atx,j) 15

10 s = a(j) * e(j) + 5 16

13
14

CDOALL 10 j =k + 1,n
w(j,1) = 0.d0
10 CONTINUE
CDDALL 347 j =k + i,n
o(j) = alk,j)
347 CONTINUE
DO 330 j =k + 1,n2
cptmp_346(j)=a(j)xe(j)
1 +cptmp..346(j~1) 26
27

Figure 7: Parallelization with the default pass-
file

390 CONTINUE

Flgure 9: Parallelization with hand optimiza-

n HN\H\\HJMH]H;H]HH\MWJH LIS R T
a

Loop\I ine ZI)

IR

. 1‘% is efficient to use the visualization of program
information as parallelization support.

| Additionally, we found some patterns of pro-
¢ gram information; specifically, data dependen-
cies that match particular transformations. It
§ may predict the existence of individual relation
. of data dependence patterns and transforma-
tion methods. Investigating and formalizing
this relation is our future work.
References

[1] M. Girkar and C. D. Polychronopoulos.

Loop(iine 18)

CDOALL 10 j =k + 1i,n
w(j,1) = 0.40
10 CONTINUE

DO 347 j =k + 1,n

e(j) = alk,j)
cptmp 346(]) =e (j)*e(j)
+cptmp_346(j-1) 23

347 COHTINUE

Figure 8: Parallehza,tlon w1th a modified pass-
file

difference between the three results, we zoom
in to each parallelized part of the transformed
programs in each program structure view.

The program structure views near the cube of
line-13 and the corresponding codes are shown
at Fig.7, Fig.8, and Fig.9. They describe the
parallelization process of the loop at line-13.

5 Conclusion

In this paper, we described the effectiveness of
visualization for parallelization support. We
parallelized a real application of the extended
Huckel calculation with three parallelization
methods to demonstrate the usefulness of the
visualization tool, NaraView.

The comparison of the three methods
demonstrated the interaction between users
and parallelizing compilers improving the par-
allelism of the program, and it turned out that

._.2()_~

The hierarchical task graph as a univer-
sal intermediate representation. Interna-
tional Journal of Parallel Programming,
22(5):519-551, 1994.

M. Haneda, M. Sasakura, U. Nagashima,
Y. Kunieda, and K. Joe. Collaboration
of parafrase-2 and naraview for effective
parallelization supports. In Proceedings of
PDPTA (will appear), 2000.

C. D. Polychronopoulos, M. Girkar, M. R.
Haghighat, C. L. Lee, B. Leung, and
D. Schouten. Parafrase-2: An environment
for parallelizing, partitioning, synchroniz-
ing, and scheduling programs on multipro-
cessors. In International Conference on

Parallel Processing, Vol. 2, pages 39-48,
1989.

M. Sasakura, K. Joe, Y. Kunieda, and

K. Araki. NaraView: An interactive 3D
visualization system for parallelization of
programs. International Journal of Paral-

lel Programming, 27(2):111-129, 1999.

