BEET L MERR 30— 1
(2000. 6. 26)

Loop-Structured-Computer W LBF7 I JBENRTF IS XTISA AV

MR, FHE, DemecloM. Lao, Natalia V.Polulyakh, &M BRHE, &Kk
BABTRSE TR ET R TER

DPIEICL DT R JBEFIRT VA XT 54 A hEANEF—IR—ADFREOS—RRIIEFMOFELZET
SHBETHY, ThETOUL DL OUFINEI X 3EHLOREAIMBENTWS, EHETE, 7—F 7 0—H
DA FIFHELHE T % B Loop-Structured-Computer (LSC) L TEDMFPLE £1TS Z &2 HH 2. V— X I— RO
BEMTEALZ0, FHCXAERIIFUAEISEN. TIT 260245073 /8BRS, ¥rv7ax
b =B RA—BORITRHT BV —~RA I~ REEBICERTE IOV S LAV RV — Y BERTEHIERL
Ko T LSCETT7 I VBEFINT IAXT IA AL MDOERZELLKBHIENTER, I5IT, FATSPE
HEHERHEOBR, BERLRIZONWTHRIALE. ‘

Parallel Computing Technique of Pairwise Alignment by a
Dataflow Loop-Structured-Computer

Nobuaki Kikuchi, Zhongmin Li, Demelo M. Lao, Natalia V. Polulyakh, Yoshio Yoshioka and Toshio Shimizu
Dep. of Electronic Information System Engineering, Faculty of Science and Technology, Hirosaki University

1.

The pairwise sequence by dynamic progr algorithm is performed in the Lbop-Stmcm:ed-Computer (LSC).
The Processing Elements (PEs) of the LSC are connected with each other to make a loop configuration and the number of
connected PEs can be varied. However, there is a drawback in using the LSC, i.e, it requires a lot of programming efforts to
write the source code. To deal with this, we wrote a program that automatically generates the appropriate LSC source code
with the option to vary the initial parameters: amino acid sequences lengths, gap cost, and match/mismatch weights. Pairwise
alignment by the dataflow LSC is implemented successfully as confirmed by the correct alignment obtained. We also show in
this paper the performance of the LSC in parallel processing involving different number of PEs.

1 Introduction ful and faster algorithms than, e.g., BLAST algorithm

Since faster microprocessors are easily available re-
cently, parallel computers with shared memory tech-
nology are becoming the mainstream. Yet, the prob-
lem associated in building interconnections for large-
scale multiprocessors system remains unsolved.

We have proposed a parallel computer with a
dataflow processing scheme in 1986, the loop-struc-
tured-computer (LSC) [1]. In the LSC, the proces-
sors are connected in a unidirectional cbnﬁguratiqn
designed in the simplest form, which provides the
minimum number of links and simpler hardware in-
terface,

Pairwise sequence alignmént is one of the most
fundamental techniques to find similarity of biologi-
cal sequences such as amino acid and nucleotide se-
quences. With the ongoing genome and post-genome
projects, this technique is getting even more impor-
tant. To keep in pace with the explosively increas-
ing biological data, speedup of the sequence compar-
ing techniques is required. In particular, more power-

[2]. To satisfy this requirement, parallel processing
has been considered as an alternative approach for
the speedup of the sequence comparison [3-6].

2 Architecture of the LSC

The PEs of the LSC are connected in a unidirectional
loop configuration as illustrated in Fig. 1 below:

PE o1 PE 3 PE 4
SHR. |— SHR |[——--—--~- — SHR
——
unidirectional loop /
SHR — SHR t+— SHR [|— SHR
PE g PE, PE, PE 3
RS232C
38400 bps
Host SHR: shlftregis%er
PEg: processor for communications
Computer PE,, PEy, .., PEy- @ processors for computation

Figure 1: Architecture of the LSC
It consists of n-1 PEs for computations and one PE
for communications that is connected to the host com~
puter. Linking the shiftregisters (virtual ones)

—-1—

among the PEs realizes the loop connection. These
virtual shiftregisters are activated through a non-
maskable interrupt (NMI) routine executed at the syn-
chronized interrupt clock of 250 Hz.

3 Pairwise Sequence Alignment by
Dynamic Programming Algorithm
The pairwise sequence alignment problem can be
solved rigorously by applying the dynamic program-
ming algorithm [8, 9]. Fig. 2 illustrates a simple
example of the dynamic programming algorithm for

pairwise alignment.

obtained alignment

GTL-C
G-LAC
Figure 2: The path matrix for dynamic programming algorithm

applied to the pairwise alignment of two amino acid sequences,
“GTLC” and “GLAC”.

Two sequences to be compared are placed on the
horizontal and vertical axes of the matrix. The align-
ment is made from upper left to lower right in the
matrix. The score of each node is computed from a
score function. The optimal value of the score func-
tion for each node is selected from three possibilities:
diagonal, horizontal and vertical paths. This proce-
dure is represented by the score matrix, D :

D =max(D. . + W,

ij 1,1

D,,;+4d, Dy, +d) €Y
where w,,is the weight for substituting the ith
letter of the horizontal sequence for the j-th letter of
the vertical sequence (vice versa), and d'is the weight

for a single gap. The substitution weight is defined

by the substitution matrix among 20 amino acids (e.g.,
Dayhoff matrix [10]). For simplicity, we defined
here the weights for match, mismatch and gap as 1, -
5 and -5, respectively. '

4 Implementation of the Pairwise
Alignment in the Dataflow LSC
4.1 Parallel Computing Technique of
Pairwise Alignment by Dynamic
Programming
The dynamic programming algorithm can be made
more efficient by parallel processing. The standard
way of computing the node, D, ;, is in the row-wise
direction, in which each node is computed from left
to right for each row, and from top to bottom in the
matrix. In contrast, if the order of computation is
taken along the anti-diagonal direction as shown in
Fig. 3 (bold arrow), the computations of D, and D, .
on the same anti-diagona!l line can be performed si-

multaneously.

Figure 3: An illustration of a parallel processing in a dynamic
programming algorithm applied to pairwise alignment,

4.2 The LSC Code for Pairwise

Alignment

Programming for pairwise alignment in the LSC, for-
tunately, does not require writing all the routines to
compute for the score of each node in the score ma-
trix. Instead, only the code to compute for the score
of one node is written and the same code is copied to
compute for the scores of the other nodes, but with
different variable identifier corresponding to the node
subscript. Thus, to facilitate in writing the repetitive
source code, we decided to write an automatic LSC

e D

source code program generator using the C language.

An example of LSC source code to compute for
the score of a single node, D“, is shown in Fig. 4.
These codes are simply repeated except for the
change in the variable's identifier.

-) —

mnl_1=38_8==31_8
mnl_1=true({match,mi_1)
mmi_l=false{mismatch,mi_1)
gml_1=gB_B+mml_1
gil_1=gB_l+g_cost
gj1-1=gl_B+g_cost
mil_l1=gml_1=>gil_1
miml1_1=true{gmi_1,mi1_1)
mii Il_l=fa|§9?gil_l,mil_l)
mjl_l=gmi_i=>gji_1
miml1_1=true{gmi_1,mj1_1)
mjj ll_l=fulse?gjl_l,lnjl_l)
ij1_1=gil_1=>gj1_1
ijillI=true(gil_1,iji_1)
ijj II_I=fulse?gjl_l, ij1-1)
dfmi_1=set{miml1_1,mjml1_1)
dfil_I=set{miill_1,ijil1_1)
dfjl_t1=set{mjji1_1,ijji1_1)
gl_1=dfmi_1

gl 1=dfit_1

gl_1=dfji_1i

- : _/
Figure 4:A samplé LSC source code that computes the score of the
node, D, ;.

4.3 The Mode of Allocation of the
LSC Source Code

We tested two allocation modes of the LSC source
code to find out which one enhances further parallel
processing in the computation. In the first mode,
each line (operator) of the instruction set is allocated
to each PE. On the contrary, in the second mode, the
whole set of instructions for a particular node is allo-
cated to one PE, and so on.

5 Results and Discussion
5.1 Pairwise Alignment
The pairwise alignment is successfully obtained for
two sequences “GTKALAILC” and “GTLGC” ,
by the dataflow LSC using the dynamic programming
approach as shown below:

GTKALAILC

GT--L--GC.
Even if the length-dependent gap cost is used, still

—3—

the correct alignment is obtained (results not shown).
In the case of longer sequences, i.e., with a length of
30 amino acids, it is confirmed that the alignment can
be obtained in spite of the enormous number of nodes
to be processed (again results not shown). In view of
the above consideration, it is possible to improve fur-
ther the program generator's capability to handle
longer sequences, and this is to be addressed in the
future research undertaking.

We note that this is the first attempt to apply the
dataflow LSC to compute for the pairwise alignment
of biological sequences.

5.2 Performance of the Dataflow LSC

In here, we highlight the pairwise alignment perfor-
mance of the dataflow LSC. We show the comput-
ing time and speedup ratio (T, /T, where T, and T,
are the computing times with one PE and n PEs,
respectively) vis-a-vis the number of PEs involved in
the actual computation. The number of PEs used in
the computation of scores of the nodes in the score
matrix, ranges from as low as eight to as high as 32
PEs.

The performance using different number of PEs
in the computation of scores of the nodes, as mea-
sured in terms of the computing speed and speedup,
is shown in Figures 9 and 10.

2000

ddd_
N B [+1] [}
[o] [o3 [=3 [=
S 5 8 5

computing time (in 4 msecunit)

2000, 4,00

1000- T T r T . ;
0 5 10 15 20 25 30 35
number of PEs

Figure 5: Speed performance of the LSC for the two allocation
modes: the first mode (square) and the second mode (diamond).

Generally, as the number of PEs used in the compu-
tation increases, the computing time decreases

speedup {(T1/7,)

¢

™ T

0 S 10 15 20 25 30 35
number of PEs

Figure 6: Speedup performance of the LSC for the two allocation
modes: the first mode (square) and the second mode (diamond), as
compared with the ideal case (circle).

while at the same time increases speedup in either of
the two LSC allocation modes. However, applying
the second mode is more efficient than the first in
terms of shorter computing time and higher speedup
ratio. This can be attributed to the fact that the first
mode takes a little more time to consolidate the result
of each PE to output the score for a particular node
since several operators are spread-out to the different
PEs.
the loop to process one node. ' In contrast, the second

Moreover, it may take more than one pass in

mode shortens the process by performing all compu-
tations for one particular node in one PE. Thus, elimi-
nating the time to consolidate the results for the score
of one particular node by making passes in the loop.
Moreover, the output for each node is obtained im-
mediately after each execution in the PEs.

Although there was an observable improvement in
processing speed while using the second allocation
mode, the slopes of the two curves are nearly identi-
cal suggesting that the rate of parallel processing is
barely improved. One of the reasons might be that
the mode of allocation used is inefficient due to its
simplicity. Perhaps, trying out novel allocation modes
and improving the LSC souce code might bring forth
improvement in the parallel-processing aspect. For
this purpose, we plan to pursue in the next research
activity the improvement of the allocation mode es-
pecially if the number of nodes is less than the num-
ber of PEs available for computation. In other words,

when the LSC is underutilized, to determine which
PE processes what node. Along this line, we hope to
establish a new allocation mode that is efficient and
capable in effecting a high rate of parallel process-

ing.

References

[1] X. Zao, A. Narita, S. Mizuta and Y. Yoshioka,
"Performance Evaluation of the LSC by Simulations of
a Cascade Shower Simulation Model", In proceedings
of the ISCA 12-th International Conference on Parallel
and Distributed Computing Systems (1999).

[2] S. F Altschul, W. Gish, W. Miller, E. W. Myers and D.
J. Lipman, "Basic local alignment search tool", J. Mol.
Biol,, 215, 403-410.

[3] Z. Li, Y. Yoshioka and T, Shimizu, "Pairwise Alignment
on the Loop Structured Computer", Genome Informatics,
10, 342-343 (1999).

[4] X. Huang, "A Space-efficient Parallel Sequence Compari-
son algorithm for a Message-passing Multiprocessor”,
International J. of Parallel Programming, 18, 223-239
(1989).)

[5] P. G.-Jamet and D. Lavenier, "SAMBA: hardware accel-
erator for biological sequence comparison”, CABIOS, 13,
609-615 (1997).

[6] O. Trelles, M. A. Andrade, A. Valencia, E. L. Zapata and
J. M. Carazo, "Computational space reduction and
parallelization of a new clustering approach for large
groups of sequences”, BIOINFORMATICS, 14, 439-451
(1998).

[7]J. B. Dennis and D. P. Misunas, "A Preliminary Architec-
ture for a Basic Data-Flow Processor”, Laboratory for
Computer Science, MIT, CSG Memo 102, 27 (1970).

[8] S. B. Needleman and C. D. Wunsch, "A general method
applicable to the search for similarities in the amino acid
sequence of two proteins.”, J. Mol. Biol., 48, 443-453.
(1970).

[9] M. Kanehisa, "Post-genome Informatics", Oxford Univ.
Press (2000). ‘

[10] M. O. Dayhoff, R. M. Swchwartz and B. C. Orcutt, "A
model of evolutionary change in proteins", in Atlas of
protein sequence and structure, 5 (3), 345-352 (1978).

] —

