BHEET UL LBk 3217
(2000. 11. 22)

BIETRBENY -0/ ET VT X L
BTN B HE B
R KEERERRFT P2 L2 & —

DNARA U7 LA EIL N BoNBEFORBEEF— Y 4BIFT22 81220, 2AM
MR EOGEET LB L VIMEF T bR TVb, FEETE )BT, MATERLZSB]ETFO
KRBT 2 AV L34 L, SEHOLDIEALRERIEBL N BEFOLF BN LTS
TR DSV, AEIETIR, REBZ 0L 1 ICA®LILICL), ZOHBRETFOBIREE
7 - VEBOREEEOFTEMBE L LTEE L. 2OMBICH L. Bl 0B % BB T L
TVALERT, 2LT, AREA TV A HMFHRORHABEOEF— ¥ 2T, ZOTALTY X
LARMD2BEOTNT) AL ERBLABRIIOVTREST, FOEE,. BALRNLF A 7 — 42
MLTHREZESBON 2o 2h, FBF— 5 I L CUHEET 27 A T XAHL ) BUWAE
BEERTI LD o,
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Recently, several methods have been proposed for classification of cancer cells based on gene
expression monitoring by DNA microarrays. In these methods, not all genes were used for
classification, but several tens of genes that were relevant to class distinction were selected and
used. In this article, this selection problem is formalized using threshold functions for Boolean
variables. A simple greedy algorithm is also proposed for the selection problem. This greedy
algorithm was compared with two other algorithms using real gene expression data obtained
from human acute leukemia patients by Golub et al. The results of comparison show that the
greedy algorithm is as good as the other two algorithms for the test data set and is much better
for the training data set.

1 Introduction

Accurate classification of tumor types is very important already-defined classes. Recently, a new
approach (2, 4] based on global gene expression analysis using DNA microarrays [1] has been
proposed. Although effectiveness of such an approach was already demonstrated, the proposed
information processing methods [2, 4] were rather heuristic. Therefore, further studies should
be done for making more accurate classification.

Golub et al. [2] divided cancer classification into two problems: class discovery and class
prediction. Class discovery is to define previously unrecognized tumor subtypes, whereas class
prediction is to assign particular tumor samples to already-defined classes. Although class
discovery is more challenging, we consider class prediction here because class prediction seems to
be more basic and thus information processing methods for class prediction should be established



earlier. In the previous methods [2, 4], predictions were made by means of the weighted voting.
All genes were not used for weighted votes, but several tens of genes relevant to class distinction
were selected and used. Use of selected genes seems better because of several reasons. Ior
example, computational cost for determining parameters and cost for measurement of gene
expression levels are much lower if the selected genes are used. Golub et al. called these selected
genes informative genes. However, previous selection methods of informative genes (2, 4] were
rather heuristic. Indeed, Golub et al. [2] wrote that the choice to use 50 informative genes in
the predictor was somewhat arbitrary. Therefore, we focus on the selection problem.

In this article, we treat this selection problem as an inference problem of threshold functions
for Boolean variables. We treat class prediction as a problem of deciding whether or not a
given sample belongs to the target class. Note that class prediction with multiple classes can
be treated by making class prediction for each class independently. We do not use real values
because it is difficult to give an appropriate mathematical definition using real values and it is
widely recognized that gene expression data obtained by DNA microarrays contain large noises.
Instead, each value is simplified to either 1 (high expression level) or 0 (low expression level),
where the method of simplification is omitted in this article.

Since threshold functions are useful, many studies have been done in the field of machine
learning. Among them, the WINNOW algorithm (3] is famous. We applied WINNOW fto selec-
tion of informative genes. However, the results were not satisfactory. Therefore, we developed a
new algorithm. We compared the algorithm with WINNOW and a very simple algorithm, using
gene expression data [2] obtained from human acute leukemia patients.

2 Deﬁnitipn of the Problem

Let {g1,...,9gn} denote the set of genes. Let {s1,...,5x} denote the set of samples from patients.
Assume that it is known whether each sample s; belongs to the target cancer class. We let
class(s;) = 1 if s; belongs to the class, otherwise we let class(s;) = 0. Let ;; be the expression
level (either 0 or 1) of gene 7 for sample j. We formalize the selection problem using threshold
functions for Boolean variables. We use r-of-k threshold functions [3]. An r-of-k threshold
function f(z1,...,2,) is defined by selecting a set of k significant variables. The value of f
is 1 whenever at least r of these & variables are 1. If the k selected variables are z;,...,z;,,
then f is 1 exactly when z;, 4+ ...+ 2z, > r. For example, consider a case ofn =5,k =3,
r=2and i = 1,i3 = 2,i3 = 5. Then, f(1,1,1,1,1) = 1, £(0,0,0,0,0) = 0, f(1,0,1,1,1) = 1,
£(1,0,1,1,0) = 0, and £(1,1,0,0,0) = 1.

We define the selection problem of informative genes as follows. Assume that expression data
and k are given as an input. Then, the problem is to determine a set of k genes {gi,,--.,9i,}
which maximizes r under the condition that z;, ; + ...+ 2i,,; > 7 if class(s;) = 1, otherwise
(1 -2y )+ ...+ (1—=;,;) > r. The latter case means that at least 7 variables must be 0
if the corresponding sample does not belong to the target class. It is expected that predictions
can be done more robustly if 7 is larger.

3 A Simple Greedy Algorithm

The inference of an r-of-k function consistent with training data is known to NP-hard. Therefore,
development of heuristic algorithms is a reasonable choice. We developed a kind of greedy
algorithm. This algorithm is denoted by GREEDY in this article.

GREEDY maintains non-negative real-valued weights wy, ..., wn, where the weights are not
assigned to genes, but are assigned to samples. We say that gene g; covers sample s; if class(s;) =



z;;. First, genes which do not cover most samples are removed and are not considered as
candidates for informative genes. Precisely, any gene g; such that #{s;|class(s;) # zi;} > g is
removed, where 6y is a threshold and we are currently using 6 = 7 ~ 9. Next, GREEDY selects
informative genes iteratively (i.e., one gene is selected per iteration). For h-th iteration, gene

m
9i, which maximizes the score is selected. The score is defined by » (ﬁ 5(°l”35(31)vft‘w)x("‘%)) ,
j=1
where é§(z,y) = 1if z = y, otherwise §(z,y) = 0. B is a constant d]eﬁned based on the experience
and we are currently using # = 1.5. Weight w, is increased by 1 if the selected gene g; contributes
to the classification of sample s;. Precisely, w; is updated by w; « w; + 1if ;, ; = class(s;).
Thus, w; represents the number of genes (among gi,, . .. ,gi,) Which cover s;. GREEDY tries to
cover each sample as many times as possible. The following is the description of the GREEDY
algorithm. It is easy to see that GREEDY runs in O(kmn) time.

1. Remove all g; such that err(g;) > o, where err(g;) = #{s;j|z;; # class(s;)}.
2. Let w;, «—~ 0foralli=1,...,m.
3. For h =1 to k, execute STEP 4 and STEP 5.

m
4. Select g;, maximizing the score B é(ctass(sy)wiy )% (h=wy) , where g; U T
h g r £ 190 Gins
j=1 .
5. Let w; « w; + 1 for all j such that z;, ; = class(s;).

4 Computational Results

We compared GREEDY with WINNOW and SIMPLE, where SIMPLE selects genes with k
smallest err(g;) values. For implementation and comparison, we used a PC with a 700 MHz
AMD Athron processor. In each case, the inference could be done within ten seconds.

We used the data set obtained from acute leukemias patients by Golub et al [2]. Acute
leukemias are basically classified into two classes: acute lymphoblastic leukemia (ALL) and
acute myeloid leukemia (AML). They used two data sets: one for training and the other for
test. The training data set (TR) consisted of 38 samples (27 ALL, 11 AML) and the test data
set (TS) consisted of 34 samples (20 ALL, 14 AML). For each sample, expression levels for 6817
genes were measured by microarrays produced by Affymetrix.

We examined the following three cases. (A) TR and TS. (B) TR was used as the test data
set and TS was used as the training data set. (C) It is known that ALL samples are further
classified into T-cell ALL and B-cell ALL [2]. 27 ALL (19 B-cell ALL, 8 T-cell ALL) samples
from TR were used as training data and 20 ALL (19 B-call ALL, 1 T-cell ALL) samples from
TS were used as test data.

Since the rounded Boolean values were biased when the number of the training samples
belonging to the target class was different from the number of the other training samples, we
made the numbers to be equal by duplicating samples not belonging to the target class.

For each of SIMPLE, WINNOW and GREEDY, we examined four cases: k = 20, k& = 30,
k = 40 and k = 50. Recall that & is the number of informative genes to be selected.

First we measured the qualities of the sets of informative genes by means of r. In Table 1,
the maximum r computed from each set of informative genes is shown. Recall that we defined
the selection problem as a maximization problem on r. From this table, it is seen that GREEDY
is much better than SIMPLE and WINNOW.

Next, we made computational experiments on predictions. Using the informative genes
computed by each algorithm, we made predictions on both the samples in the training data set



Table 1: Qualities of the sets of informative genes measured by r. For each case, the maximum
r computed from each set of informative genes is shown.

k=20 k=30 k=40 k=50
SIMPLE 15 19 24 29
(A) | WINNOW | 14 20 24 29
GREEDY | 16 24 33 40
SIMPLE i3 17 22 29
(B) | WINNOW | 12 18 22 27
GREEDY | 17 25 34 43
SIMPLE 10 15 18 71
(C) | WINNOW | 9 15 20 27
GREEDY | 15 23 31 38

Table 2: Comparison of the selection algorithms. For each case, the number of samples that
were assigned as uncertain is shown, where the number after the symbol ‘+’ denotes the number
of samples that were classified into the wrong class.

TRAINING TEST
k=20k=30k=40k =50k =20k =30k =40k =50
SIMPLE 0 1 1 1 6+1 7 541 7
(A) WINNOW 0 0 1 1 541 7 6+1 7
GREEDY 0 0 0 0 7+1 9 641 7
SIMPLE 2 2 2 2 5 6 7 9
(B) WINNOW 2 2 2 2 5 7 7 11
GREEDY 0 0 0 0 5 7 7 8
SIMPLE 0 1 1 1 1 1 1 1
(C) WINNOW 1 1 1 1 1 1 1 1
GREEDY 0 0 0 0 1 1 1 1

and the samples in the test data set, by means of the majority voting. Results of the predictions
are shown in Table 2. In Table 2, the number of samples assigned as uncertain is shown for
each case. The number of samples which were classified into the wrong class is also shown (after
the symbol ‘4+’). For example, 5+1 means that 5 samples were assigned as uncertain and 1
sample was classified into the wrong class. From this table, it is seen that GREEDY always
made correct predictions for samples in the training data set. However, for the test data set,
there was no significant difference among SIMPLE, WINNOW and GREEDY.
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