BEETIALEPERR 35-7

(2001. 6.

Detecting Seismic Electric Signals by LVQ Based Clustering

Kyoko Fukuda* Mika Koganeyama® Hayaru Shouno*
Toshiyasu Nagao! Kazuki Joe*
kyochan@ics.nara-wu.ac.jp

*Nara Women’s University
t Earthquake Prediction Research Center, Tokai University

Abstract

Aiming at short-term prediction of earthquakes, we have proposed the use of neural networks
for analyzing telluric current data observed by the VAN method. We have already tried a
telluric current data analysis method with Learning Vector Quantization. In this paper, we
will show preliminary experimental results for categorization of tellunc current data by its
frequency for the Izu islands earthquakes in Japan.

1 Introduction

In Japan, short-term earthquake prediction is one of
the most important problems because earthquakes
are quite frequent and the damage caused by the
great Hanshin earthquake in 1995 was severe. How-
ever an effective method for short-term earthquake
prediction has not been established yet. Further-
more, it is commonly believed to be impossible to
predict earthquakes effectively in the short term.
However, the VAN method [1][2], which is a short-
term earthquake prediction, has been in the lime-
light recently.

The International Frontier Research Group on
Earthquakes (IRFEQ) [6] has begun investigating
the VAN method in Japan. ! In telluric current
data (TCD) observed by VAN method, seismic elec-
tric signals (SESs) are often detected before the oc-
currence of great earthquakes. Although experts of
the VAN method can recognize SESs with a care-
ful glance, they are not mathematically modeled
as time series data. In addition, since 90 percent
of TCD in Japan is affected by train noise, de-
tecting SESs in TCD itself is considered to be an
extremely difficult job. We have succeeded in re-
moving train noises from TCD by neural networks
with the back propagation (BP) learning method
[5]. At present, TCD is recorded every ten seconds
and telemetered to IRFEQ through the public tele-
phone system. The total amount of TCD observed
in Japan in the last four years has grown too large
(several terabytes) to be analyzed by hand.

Neural networks with BP is very good at recog-
nizing patterns, but the huge amount of calculation
necessary for learning makes it difficult to establish
the neural network system as a practical solution.
Several neural network systems with BP which solve
those real-wolrd problems has adev1ce for reducing
the calculation cost.

In a previous study, we have proposed a filter to
remove train noise by dividing a series of TCD into
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set frames with 300 points. In this way, we suc-
ceeded in analyzing only specific time periods for
an observation point. However, the straightforward
extension of this neural network system may not be
practical because various sets of observed data may
make the resultant new learning data too compli-
cated.

LVQ(Learning Vector Quantization) is a collec-
tion of neural network models. The advantage of
LVQ to BP is a small calculation cost though the
ability to recognize patterns is enough good com-
pared with BP in some cases. In preliminary re-
search, we have tried applying LVQ to an SES de-
tecting system with the data of Matsushiro. In
the experiments, we could not detect SESs, but we
could only detect the difference of the season. The
data from Matsushiro is one of the clearest data sets
that is effected by train noise in Japan. Therefore,
we determined that the data from Matsushiro was
not good for the preliminary test of the LVQ sys-
tem, and tried to test again using data observed at
another point, which contained less train noise.

We focused on the TCD observed in Nijima Is-
land. Nijima Island is close to Miyakejima Is-
land, on which eruptions and earthquakes occurred
during the summer of 2000. There is little train
noise because of geographical factor in the data
from Nijima Island. The SESs for the earth-
quakes, which occurred on the 1st and the 9th
of July, were detected by experts. Furthermore,
Nagao et al. analyzed the TCD of Nijima and
reported that SESs were detected in the 10mHz
band (approximately){8]. For the reasons men-
tioned above, we chose the data of Nijima Island
for the test of LVQ. In the rest of the paper, we
report the construction of an LVQ system for de-
tecting SESs from TCD observed in Nijima Island
and the results from evaluating this system.

2 System Construction and

Evaluation

It is possible to detect SESs from TCD when the
characteristics of SESs are well known. Unfortu-
nately, the characteristics of SESs have not been
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Figure 1: the TCD observed in Nijima Island
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Figure 2: the TCD with SESs (2000.6.30)

modeled yet so only experts on the VAN method can
find it. Fig.3 shows examples of SES data. In the
figure, the vertical and the horizontal axis stands
for the voltage and the frequency respectively. The
SESs are indicated by underlined part of each fig-
ure.

In this study, we selected the TCD of Nijima Is-
land, where relatively strong earthquakes occurred
in 2000. There are two reasons to use this data
in the analysis.” The first reason is that some ex-
perts have confirmed the TCD data contain SESs
that was observed a few days before the earthquake
. The second reason is that the data was free of
train noise. Fig.1 shows typical TCD data from Ni-
jima. Fig.2 shows the data of the 30th of June 2000,
the day before a big earthquake occurred. A num-
ber of small waves can be clearly observed. So, we
planned to analyze the frequency of the data. In
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Figure 3: Examples of SESs

this study, we compose an LVQ system to classify

the inputs into either normal data or anomaly one

which contains SESs. We train the LVQ with the

normal data, so that the abnormality is found when

the SES data is given to the system. We construct

the system and examine it as follows:

1.  Preprocessing the data(smoothing and applying
FFT

2. COns)truct‘ing the LVQ system

2-1. Initializing reference vectors

2-2. Updating rules of reference vectors

3. The recognition experiment

The detail is discussed in the following section.

2.1 Preprocessing the data
In this study, we used data from the Nijima obser-
vation point. This observation point has eight ob-

servation channels toward different directions. We
choose the data of channel 1, from March to Novem-
ber in 2000 (240 days), because this channel con-
tains SESs clearly before earthquake. To remove
unreliable data, which were caused by problems
with the observation instruments, we calculated the
derivative of the data, and smoothed the sections
that have large derivative values. Next, we trans-
formed the temporal data to frequency component
data by Fast Fourier Transform(FFT). To apply
FFT for TCD of each day, we should regulate the
size of each datum as 2". The size of the datum of
each day is 8640 sampling points, therefore we cut
the last 448 points.

After applying FFT, 8192 band frequency data
was generated. We call this data the Transformed
Terrulic Current Data (T'TCD) in this paper. After
that, we divided the T'TCD into sixty-four narrow-
band (there are 64 bands, and each band width is
128) All the data for a specific frequency band is
denoted by follows. (where f is the index of the
frequency):

f | frequency (mHz)
0 0 ~ 077

0.775 ~ 1.55
Xé’X{»""ngg’ ! 6
63 | 4921 ~  50.00

To make the training data, we excluded the
data containing SES. The data containing SESs was
recorded on the following five days: the 28th ~ the
30th of June, and the 7th ~ the 8th of July. The
number of data for training is 235, and those are
denoted as

: af,al, . @l
2.2 Constructing the LVQ system
In this study, to decide the initial state of reference
vectors, we completed the following two steps.

1. Rough clustering of thetraining data set.
2. - Initializing reference vectors with k-meansmethod.

This process will now be discussed in more detail.

Rough clustering For rough clustering, we in-
troduce new vectors denoted by wvg,v1, ", Vm-1
and plan the deviding training data set into m
clusters. We decide each vector to represent the



typical vector of each cluster. These vectors rep-
resent the typical data of each cluster. These
vectors, vg, V1, ,Um—1 are calculated as follows.
First, we calculate the distance of the training data.

wg yee ,m£34 by Euclidian measure, and calculate
the mean and the standard deviation.

128
dij = d(e],2]) = \| Y (=l (n) —={(n))?
n=1 ’

My : average of dij 0q: standard deviation of d;;

The numbers 7 and j refer to the date indices, and
n refers to the frequency. After getting the aver-
ages and the standard deviation, we selected twenty
data randomly from the training data. We call these
twenty data the candidate data. We select two data
zf,z{ from the candidate data. zf,xf to satisfy the
followmg condition:

)
If any combinations in candidate data do not sat-
isfy the equation (1), we select another twenty data

for the candidate randomly. When =, =] satisfies

the condition(1), we set vo, vito =], x} respectively.
After the vectors vg, vy, -, Vs were selected, we

selected two data points :ck and a:, from the candi-

date data, whose distance a:f w{ satisfied the equa-
tion dyg; > Md Then, we calculated the distances
between ={ and each vo,w1,--,v,. If each distance
satisfies

d(zf,v:) > Ma + 204

dpg > My + 204

foralli=1~s),

then, a:{ is set to v541. On the other hand, if the
distance is too short, we never select the data =

as the candidate data. The criterion for dlsql.ualhﬁ]c
cation due to shortness is:

d(z],v:) < Ma— 204 forany (i=1n~s).

After that, we examine the data z] in a sim-

ilar manner. We repeat the selecting process as
mentioned above until m data have been selected.
But the datum, which is judged as too close to se-
lected vectors, or which has been already selected,
.are never selected. After checking all the candidate
data, if the number of vectors is less than m, an-
other twenty candidate data are selected randomly.
After the vectors vp,vy,---,Um..1 were selected,
we calculated the distances between each train-
ing data point a:(’; ,a:{ yeee ,mﬁu and the selected
v9,V1,** ,Um—1 vectors. Learning data point is
regarded to be in the same class as the closest
vectorv;. :

Initializing reference vectors In the preceding
section, the data for learning was classified into m
classes. Next, we must determine the initial state
of reference vectors for LVQ. We used the k-means
method for each class to determine the typical vec-
tors of the class, and used them as the initial refer-
ence vectors.

2.3 Training the LVQ
In this study, the LVQ training process consists of
the following 2 steps.

1. Updating the reference vectors
2. Re-labeling the reference vectors

Each reference vector has a label, which exepress
its category. Each category consists of plural refer-
ence vectors with the same label. After updating
reference vectors, some categories can potentially
be close together. In that case, we fuse them by
re-labeling the reference vectors. If the fusion of
categories occurred, more training and re-labeling
of the reference vectors is needed. This process will
iterate until the no further fusion occurs. The fol-
lowing describes the process in detail.

Updating reference vectors In this study, the
number of iterations is not provided, but learning is
finished when the total movements of all reference
vectors converged to 1/10 of the average My.

Re-labeling reference vectors After updating
the reference vectors, re-labeling is necessary. If two
categories are very close, these categories needed to
be fused. So we search the closest categories by cal-
culating the average distance between the reference
vectors belonging to each categories. If category B
was the closest to category A, we calculated the dis-
tance and average of them M 48, The condition for
fusing is M4 < My +04.

If M 4p satisfies this condition, all the labels of cat-
egory B are changed to A.

2.4 The recognition experiment

After updating and re-labeling; we evaluate the sys-
tem with the TTCD (including the SES data). We
calculated the distances between each datum 1in the
TTCD and the reference vectors, and its class is
the same as the class of the closest reference vector.
The LVQ method classifies the input as the same
group with the closest reference vector regardless of
the distance between the input data and the ref-
erence vector. We assume the SES contained data
will be far away from any normal data. Therefore
we provide the threshold; if the distance between
the data and the closest reference vector is larger
than a constant value, the datum consxdered as an
exception.

Let D; denote the distance between the TTCD
x! 7 and the closest reference vector r (i = 0 ~ 239).
If D; satisfied the following condition, the data will
be detected as an error. Let t;he distance between
the elements of the TTCD (X{,- -+, X4, ) and the
closest vector r be denoted d. If D,' satisfies the
following condition,

D; =d(X!,r) > My +o..
the datum X; is detected as an error.
3 Experimental Results

We analyzed the average and dispersion of the
TTCD for each frequency band (bandwidth = 128).



First, we calculated the average and the standard
deviation of the distances for all TTCD. Fig.4 shows
the average distance versus frequency. In the figure,
the higher the frequency is, the smaller the average
is. Fig.5 shows dispersion versus frequency, and the
standard deviation is larger in higher frequency.
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In the LVQ experiment with the training data,
few errors are detected in the 8mH 2~50mH 2 band.
Then, we ran the entire TTCD set through the
process five times. All the SES data (28th, 29th,
30th in June, and 7th in July) were detected suc-
cessfully. The data from the 8th of July was hard
to be detected because few SES components were
present in the data. However, it can be detected
in the frequency band near 12.5mHz. The data
of the 29th of June is also detectable in the band
12.5mHz ~ 32mHz. Fig.6 show which band had
had errors that detected the SESs. The input data
is Jun 28th, 2000. Another 4 days data are also de-
tected. The y-axis showed the number as an error
in the five experiments. Fig.7 show the number of
errors for each band.

4 Summary

We proposed a prototype of an automatic system
for short-term earthquake prediction using the VAN
method. The goal of this research is to detect SESs
from TCD that proceed earthquakes. It has been
said that only experts could find the SES because
the characteristics of SESs have not been modeled
yet. However, our system could detect all the SESs
in the TTCD we used. In this study, we chose
the TTCD of Nijima Island observation point near
Miyakejima Island where the eruption was occurred
with earthquakes in 2000. Experts guessed that
SESs are contained in the TTCD. We transformed
the temporal data to the frequency data by FFT,
- and analyzed them. The datum which does not in-
cludes SESs were used for training. After learning,

we applied all of the data including SESs to the
system, and succeeded in detecting SESs at spe-
cific bandwidths. This result is supported by other
research at IRFEQ. In this research, SESs are de-
tected on the specific band, even though the char-
acteristics of SES- are not well known. Therefore,
this report shows very effective results.
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Figure 6: the result of the LVQ error. The input
data is Jun 28th, 2000
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Figure 7: the number of data as erfor, in each fre-
quency band



