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Abstract The ability to restore an image from
signals received through a noisy channel is an
important concern. This issue is related to the
physics theory of spin-glass. In the theory,
the Ising spin system is usually used for image
restoration; however, a lot of calculation time
s needed to obtain precise solution. As a result
many researchers substitute the Ising spin model
with the analog neural network model. We an-
alyzed the analog neural network ability applied
to the image restoration problem using the mean
field theory.

1 Introduction

In this paper, we analyze the image restoration
abilities of an analog neural network model. The
ability to restore an image received through a
noisy communication channel is an important con-
cern. Addressing the image restoration prob-
lem using the mean field theory of the Ising spin
model was discussed by Nishimori & Wong [1].
This problem is related to the spin-glass theory in
- physics.

In image restoration, the structure of the de-
coder/receiver model is usually assumed to be
identical to the structure of the encoder/sender.
However, in our research, the decoder/receiver
does not have a structure identical to that of the
encoder/sender, because the difference in the ro-
bustness of the noise from an identical structure
poses a very interesting problem. ‘

In general, combinatorial optimization should
be used for the Bayesian approach of the image
restoration [2]. The present work provides a good
example for comparing the abilities of the analog
neural network approach with those of the Ising
spin system not only for image restoration, but
also for combinatorial optimization problem.

The analog neural network model is faster than
the stochastic Ising spin model in the sense of com-
putation time; however, the quality of the solution
obtained from the analog neural network model
has not been discussed.

In a computer simulation, the analog neural
network model is easy to implement, and a lot of
researchers have applied it to optimization prob-
lems; however, few have discussed the goodness of
the solution.

Recently, Nishimori & Wong analyzed the im-
age restoration problem and the error-correcting
problem theoretically using the Ising spin model.
They further confirmed their theory with the sim-
ulated annealing method. For the image restora-
tion problem, it is easy to define the goodness
measure of solutions. Thus, we analyzed the ap-
plication of the analog neural network model to
the image restoration problem theoretically, and
compared it with the results of the Nishimori &
Wong’s study.

2 Model and Analysis

Now let us define the problem of image restoration
such as Figure 1. The original image, {¢;}, has a
binary value of {—1,1}. We assume the source
image, {£;}, has a prior probability of:

P, ({€}) < exp(B, ) _ £:&;). (1)
i<y
we can then consider the parity check code to be
{&€;}. The sender transmits the raw code {£;}
and the parity check code {¢;&;} to the receiver
through a noisy channel. The receiver receives -
the noise added code {7;} instead of the raw code
{¢:}, and also receives {J;;} instead of the parity
check code {£:¢;}. ;
The problem of image restoration is the recon-
struction of an image, {o;}, using only the de-
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Figure 1: Schematic diagram of the image restoration problem

graded information {7;} and {J;;}. When {J;;}
and {r;} are received, Nishimori & Wong pointed
out that the posterior probability of the restored
sequence {o;} can be written as follows [1].

P({e:}l{Ji}: {n:})
exp(B)_ Jijoio; +hY o) Pu({oi}) (2)

i<y 7
where, the image prior Py, (-) is

P ({0:}) x exp(Bm D_ 0i05). (3
i<i

We also assume that both images {{;} and {o:}
have a same prior probability distribution. Thus,
the difference between P,(-) and Pn(-) is only pa-
rameter 8 and B,. The receiver cannot guess
the source image’s prior parameter §s; therefore,
the receiver’s prior parameter is substituted for
B In the posterior probability equation (2), the
Hamiltonian appears in exponential function:

BH =-BY " Jijoio; —h Y _ mioi. )
i<i 3
Therefore, the minimization of the Hamiltonian
under the prior probability Pp,(-) stands for the
maximization of the posterior probability. In the
ground state, that is, T, = ;! = 0, this maxi-
mization corresponds to the MAP (Maximum A
Posteriori) estimation. In contrast with MAP,
decoding under the finite temperature, that is,
T,. > 0, corresponds to the the free energy mini-
mization in the finite temperature. The finite tem-
perature decoding corresponds to the MPM (Max-
imization of Posterior Marginals) estimation.
In this study, we treat the noise of the channel
as the additive Gaussian. Hence, for a given image
{¢&:}, the Gaussian channel is given as:

Pout({-]ij}f {T'H{El}) x

o dag )2 . )2
exp(_NEKj (‘;'}2 B68) D> (T;Tzfoft) ),

(5)

where Jo and 7 are the mean and J?/N and 72
are the variance of the Gaussian noises.

The average of any quantity f({o;}) is calcu-
lated as:

= ;H/dJH/dr

Py ({&}) Poue ({Ji5}, {m:} 1{&])
oy fHo:))e P Pr({o:})
Yione P Pul{a:})
where H is the Hamiltonian given in equation (4).
The outer brackets [-] in equation(6) denote the
averages over {&;}, {/:}, and {r;} with the weight
PsPout-

(6)

2.1 Analog neuron model

Hopfield and Tank proposed to use an analog neu-

ral network method for finding the minimum of

the Hamiltonian or free energy[4]. We can eas-

ily extend their approach to the present case, and

obtain the dynamics of the analog neural network,
dz;

- = + tanh(8 Z Jijz; + Bm Z-’Bj + h‘r,-), (7

where z; is the output of the i-th analog neuron.
We employed the standard approach proposed
by Bray-Sompolinsky-Yu [5] to analyze the equi-
librium properties of equation (7). Each site has
M binary neurons, and the output of the site is
defined as the population of firing neurons

L&
8 = Hzaitu (8)
a

where 6;, has a binary state that is {~1,+1}.
Then, as the parameter M becomes infinity, each
site can be taken as the analog value [—1,+1].
Corresponding to the Hamiltonian appeared in
equation (4), we introduce the following Hamil-
tonian:

_8H _ ,BEJ'-s».‘y + 5 Zs-s~ + hZT'B' (9)

M ij SiSj m iSj i8i
i<i i<i i

In the large M limit, it is easily shown that equi-
librium equation of (9) is equivalent to the equi-

librium of the equation (7). The prior probability
P,,(-) is included in this Hamiltonian.
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Figure 2: The overlap curve versus prior param-
eter T,, that is equal to 8;!. The random-field
strength h is chosen to be A = 798,/728s (Opt
h), h = 0.90pth, or h = 1.10pth. This figure is
the same as the one that appeared in Nishimori
and Wong study [1].

In this way, the image restoration problem is
replaced by the optimization problem to find the
minimum state of equation (9) under the proba-
bility Ps.

2.2 Analysis

Since the equilibrium properties of equation (9)
coincide with those of equation (7), we will an-
alyze the system of equation (9), instead of the
system of equation(7), through the following av-
eraged replicated partition function. To find the
minimum state of equation (9), we evaluate the
following averaged replicated partition function,

(2"]= T P{&ND D PRI (10

(€148} —

The standard replica calculation with the
replica symmetric ansatz [6] leads to the expres-
sion of order parameters:

mo = tanh(B8,mo), (11)
- = Tre eﬁ;’::: hf( ;)fn I:;(U(w))’ (12)
. Tre eﬂ;";o; }{(gfmi)(U(Z))z’ (14)

Tre efsmof [ Dz zF(U(z))
2 cosh(B,mo)+/h272 + 2I2q

where the function U(-) is

U(z) = VA*7? + B27%qz + Bmm+ (hro+BJot)E (16)

X (15)
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Figure 3: The overlap curve versus the parameter
B. The variance of the Gaussian channel is small
(J = 0.60). The performance of the analog neu-
ral network is almost the same as the Ising spin
model. ’

and, the function F(-) is the solution of the fol-
lowing self-consistent equation:

F(z) = tanh (U(z) + 8*J*xF(z)) a7

These order parameter equations for the ana-
log neural network decoder are almost the same
as Nishimori & Wong’s equations [1]. The only
difference is the order parameter x, which is called
susceptibility, and its relation term

B*IxF(z)

in the equation (17). This term is called the “On-
sager reaction term” in physics. When we assume
x = 0, the order parameter equations is identical
to Nishimori & Wong’s.

3 Results

In this study, we evaluated the goodness by over-
lap:

M = [&sen((o:)]

Tre eP+mo¢ [ Dz sgn(U(z))
2 cosh(B;mq) '

(18)

In conventional image restoration, the two-
body exchange term; 8 = 0 does not exist. Under
this condition, the results of the order parame-
ter equations (11)~(15) are identical to the re-
sults of the Ising model analysis [1]. Nishimori
& Wong pointed out that MAP estimation does
not derive the best solution in a meaning of over-
lap. Their assertion is correct in the case of the
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Figure 4: The overlap curve versus the parameter
B. The variance of the Gaussian channel is large
(J = 1.00). The performance of the analog neural
network is worse in a large S.

analog neural network. Figure 2 shows the depen-
dence of overlap M on the model prior parameter
Tm = B;!. The original image parameters are
T, = B7! = 0.9, and the channel noise parameter
79 = 7 = 1. The usual practice in image restora-
tion is to use a Hamiltonian with a fixed ratio of
h/Bm, using B, as an adjustable parameter. We
kept the ratio and examined three patterns of h.
Nishimori & Wong derived the optimal value of h,
that is, h = 708m/72f;. The ground-state limit;
T, — 0 gives the MAP restoration. The maxi-
mum overlap is around T}, = 0.9 for the optimal

h.

The difference between using the analog neu-
ral network and the Ising spin model appears in
the existence of two-body exchange term 8. When
the mean control parameter of the Gaussian chan-
nel is set as; Jo = 1.0. The performance of the
analog neural network model is almost the same
as the Ising spin model when the variance of the
Gaussian channel is not large. Figure 3 shows the
overlap for the two-body exchange parameter 3.
The remarkable difference does not exists in the
condition that J = 0.60, which is the standard
deviation of the Gaussian channel. However, the
larger the parameter J becomes, the more the dif-
ference becomes apparent. When J is set larger,
the performance of image restoration worsens in
the large 0 area. Figure 4 shows the results where
J = 1.00.

These results shows that the analog neural net-
work does not improve the quality of image. How-
ever, the performance of image restoration is al-
most the same when the variance of the Gaus-

sian channel is small. Even a large variance of the
Gaussian channel is not a serious problem, because
the receiver controls the effect of the parity check
code by choosing the proper S.

4 Discussion

In this research, we evaluated the image restora-
tion abilities of the analog neural network. With
the conventional image restoration method, send-
ing only image {;}, the estimated overlap with
the analog neural network model is equivalent to
that of the Ising spin network model. The differ-
ence occurs in sending parity check codes {;{;}.
Unfortunately, in this case the ability of the ana-
log neural network does not improve over the Ising
spin network model. However, in the case of a
small noise variance, the performance of the ana-
log neural network is as good as the Ising spin
model. This difference comes from the Onsager
reaction term. :

Moreover, the calculation cost is much smaller
than the Ising spin model. To use the Ising spin
model, we must calculate states of neurons with
a stochastic process. The analog neural network
can perform this calculation with a deterministic
process. This characteristic of the analog method
is very beneficial.
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