gooooboooboonb 3503
ooooboobooog

TS57EIFBMHETILITYUILICESITREZS 2FABICL S
MR EICDNWT

fRH e, Hk R
ZFBERHRARME, HEBRIKRY

S IRABHHEMNET BRI R TS TICBWTSERNBECHETMER7Z VI LN
HSTWARWEETHSE., ZORIXTE, ROEXDIC22DTST7DHED 13 1 36D
HWEEBRETEZZLICEY VS TRABHHEER24TD FEICODWTRRS., £7F, V7S T7%2EH
FSTIKERIAL, RBICKVEHIESOEESELEITLZZLICKYSRANVAHITTE. RIS, 24
FhOTSTDIRTORBHNT S TOHEBICBWT, HEDOSRIUA—HITINEIMTH
IhEEERT S, FLT, TOREFHALT 22007570 13 1 Me2FAET S, X277
ALT 22075 7MOMRICBITS 13 1 MEORBHEEERETHZLICKY, BED
HEEHEO7Z VIV XLICEWTHLYRENIC R ZLAHFETES., MoREFIALE
HEEHEDESDOTO TS LEEBHL, WSOMDERNFSITEIFLELZ S, EBHH
ORELUERETHESNE.

Accelarating graph isomorphism algorithm by finer
classification of layered graphs

Mario Nakamori
MITSUBISHI ELECTRIC Corporation, Tokyo A&T University

Kazuma Fukuda,

No polynomial time algorithm is known for the graph isomorphism problem. In this paper,
we determine graph isomorphism by limiting the range of 1 to 1 correspondences between
two graphs as follows: We reconfigure the graphs into layered graphs, labeling vertices by
partitioning the set of vertices by degrees. We prepare a correspondence table by means
of whether labels on 2 layered graphs match or not. Using that table, we seek a 1 to 1
correspondence between the two graphs. By this method, we are able to determine graph
isomorphism more efficiently than by other known algorithms. The algorithm was timed with
on experimental data and we obtained a complextity of O(n?).

1 Introduction

The graph isomorphism problem is to determine
whether two given graphs are isomorphic or not.
It is not known whether the problem belongs to
the class P or the class NP—complete. It has been
shown, however, that the problem can be reduced
to a group theory problem ([7]).

Most studies of graph isomorphism ([3], etc.)
restrict graphs by their characteristics, are con-
cerned on the existence of algorithms ([4, 5], etc.),
and only a few papers report the implementation
of algorithms ([2]) and experimental results.

At present the best computational complexity

by worst case analysis ([4]) is O (C"I/HO(D). This

god

algorithm makes use of the unique certification of
a graph.

In the present paper, we consider the graph
isomorphism problem for non-oriented connected
regular graphs whose vertices and edges have no
weight. We seek graph isomorphism by limiting
the range of 1 to 1 correspondences between the
two graphs as follows.

First, we choose one vertex as root for each
graph and reconfigure the graphs into layered
graphs corresponding to the chosen vertices.
Next, we label those vertices by partitioning the
set of vertices by distance from the root vertex.
We prepare a correspondence table which reflects
whether labels on 2 layered graphs match or not.

研究会Temp
数理モデル化と問題解決

研究会Temp
35－3

研究会Temp
（２００１．　６．２６）

研究会Temp
－9－

4 5
Original Graph

Layered Graph

Figure 1: Layered Graph

Then, refering to that table, we search for 1 to 1
correspondences between the two graphs.

We have been successful in determining the
isomorphism of graphs within a reasonable time
using experimental data; these results are also
reported in the present paper.

We consider only regular graphs. Since the gen-
eral graph isomorphism problem can be reduced to
the regular graph isomorphism problem in polyno-
mial time ([1]), this does not lose generality.

1.1 Preliminaries

Let the two given regular graphs be G1 = (V4,
El)a G = (‘/ZaEQ)a where H/l| = |V2| = ‘V| =n,
|E1] = |Es| = |E| (= O(n?)). Each vertex is
uniquely labeled and is stored in an array of size
n. Graph isomorphism is defined as follows.

Definition 1 Two graphs G1 = (V1, E1) and G
= (Va, E3) are isomorphic, if there is a 1 to 1
correspondence f : Vi — Va, such that (v,v") € Eq
iff (f(v), f(v")) € Ey for any (v,v") € Ev. This

function f is called an isomorphism between G

and Gs.

We consider only regular graphs for which the

vertex degree satisfies 3 < d < L”T’lj, because of

the relation between a graph and its complement.

2 Reconfiguring Graphs to
Layered Graphs

2.1 Layered Graphs

Given a graph G and a vertex r € V, the layered
graph L(G,r) with root r consists of

1. vertices on G

2. edges on G

0100

3. level(u) for each vertex u

where level(u) is the shortest distance (or the
depth) from 7 to u (Figure 1). Transforming an
n vertex graph to a layered graph can be done in
O(n?) time.

2.2 Characteristics of Layered
Graphs

We divide the set of vertices adjacent to v into
3 subsets, Dy, (v), Ds(v), and Dg(v), as follows.
1. Dy(v) ={v" | (v,v") € E
and level(v') = level(v) — 1}
2. Ds(v) ={v' | (v,v') € E
and level(v') = level (v)}
3. Da(v) ={v' | (v,v') € E
and level(v') = level(v) + 1}

Let the number of vertices of each subset be d,,
ds, and dg :

1. dy(v) = |Dy(v)] (upper degree)

2. ds(v) = |Ds(v)| (same level degree)

3. dq(v) = |Daq(v)| (lower degree)

It follows that the degree of v, d(v), is equal to
dy(v) + ds(v) + dg(v).
It is trivial to derive at the following:

b du(T) = ds(r) =0, dd(T) = d(T)

e cach vertex v except the root vertex satisfies
dy(v) > 1

e all vertices adjacent to the vertices in level i
have level i or (i +1).

Given these assumptions, we propose the follow-
ing.

Proposotion 1 Two graphs G1 = (V1,E1) and
G2 = (Va, Es) are isomorphic if and only if there
are vertices v1 (€ V1) and va(€ Va) and the two lay-
ered graphs L(G1,v1) and L(Ga2,v2) are isomor-
phic.

Each vertex v(€ V) has a label ! (level(v),
dy(v), ds(v), dg(v)). Let the label be denoted
by M(v). We call the set of vertices that have

L A label for a general is constructed by graph appending
each vertice’s degree d(v) to the level.

研究会Temp
－10－

Table 1: Example of Labeling. Data’s from graph

shown in Figure 1

A [s[1]e]|7]2]4]5]3
level [1]2]2]2]3]3]3]3
dw) 313333333
dy(v) || 0] 11

dsv) [o]o]1]1

dav) [31211 0 0
class || 1] 2]3]3]4]4a]4]4

the same labels a “class,” which we denote by B;
(1 <1 < k, where k is the number of classes). For
example, data from Figure 1 is shown in Table 1
sorted by label. We denote by £(G,v) the vertices
of G partitioned into classes.

3 Finding a1l to 1 correspon-

dence between two graphs

In this section, we consider solving graph iso-
morphism problems by limiting the range of 1 to
1 correspondences between the two graphs making
use of layered graphs.

3.1 Correspondence between 2 Lay-
ered Graphs

For two given graphs, we consider all layered
graphs for which a vertex of the graph is the root.

For v; € V4 and v; € Vo, ¢;; = 1 if L(G1,v)
and £(G2,v;) have the same labels and partitions,
otherwise ¢;; = 0. Thus, we have a correspondence
table as shown in Table 2.

It is easy to see that each table entry’s value is
unique and does not depend on expressions of the
two graphs.

The entries with a value of 1 are candidates for
a 1 to 1 correspondence between vertices the two
graphs.

In the graph isomorphism problem, we have to
determine whether there exists a 1 to 1 correspon-
dence between vertices in two graphs checking all
possible correspondences® in the correspondence
table. Of course, the possible correspondences do

2In practice, it is not neccesary to enumerate those cor-
respondences to determine isomorphism.

Table 2: Table of Layered Graphs

G1
1 2 7 n—1 n
1 0 1 0 1 0
2 0 1 0 1 0
Ga j 1 0 1 0 1
n—11 0 1 0 1
n 0 1

not, always indicate isomorphism, so we have to
enumerate all the 1 to 1 correspondences and test
for isomorphism. However, the table limits the
range searched for a 1 to 1 correpondence.

If there is no 1 to 1 correspondence between two
graphs based on this table, they are not isomor-
phic.

3.2 Solutions and Issues

We have implemented the above algorithm and
in Section 4 apply it experimentally to determine
isomorphism. We test for 1 to 1 correspondence
between vertices in two graphs as follows.

1. Construct a 1 to 1 correspondence table as
preprocessing.

2. Test for 1 to 1 correspondence between ver-
tices in the two graphs.

The program based on our algorithm described
in the next section implemented has not adopted
stronger methods to bound recursion, because we
want to makes it easier to understand effectiveness
by using a table.

4 Experiments

We have implemented the program described
above and have experimented on various regular
graphs.

4.1 Environment and Graph Data

Experiments were carried out with a Celeron
450MHz, 128 MB memory (and 128 MB swaps)
and C (gce-2.91.66) on Linux (2.2.14). We mea-
sured running time using a UNIX like OS com-
mand “time.”

0110

研究会Temp
－11－

Deg. 10 (Ave) —X— =

Deg. 10 (Max) - + >

Deg. 10 (Min) ~ %~ X
o) - -

Time (second)

=
S
3

01

20 50 100 vertices

Figure 2: Isomorphic case

Deg. 10 (Ave) —X— =
Deg. 10 (Max) - + >
Deg. 10 (Min) ~ - - > X
o) = .
¥

Time (second)

=
S
3

01

20 50 100 vertices

Figure 3: Non-isomorphic case

We have constructed various regular graphs for
input using a program that was implemented
according to [6]. Those graphs have numbers of
vertices from 20 to 120 with vertex degree of 10.

4.2 Results and Estimation

Computational results are shown Figures 2 and
3. In these figures, we show the average and the
maximum time versus the number of vertices in a
graph, and depict the resulting curve?.

As a result, we conclude that the experimental
time complexity is proportional to O(n*) regard-
less of whether the graphs are isomorphic or not.
These results tend to be closer to the complexity of
making a correspondence table than of examining
1 to 1 correspondences between the two graphs.

Differences between average time, maximum time

3That was multiplied by adequate constants to be easily
able to compare.

and minimum time in the number of vertices and
degree are very small, so the program is quite
stable. Standard deviations in the results are
also very small (though not shown here) and did
not have any result over 1 second. Furthermore, in
the non-isomorphic case, we could determine lack
of isomorphism by testing only the table (in the
graphs used at least).

5 Conclusions

In the present paper, targetting regular graphs,
we considered graph isomorphism by limiting the
range of 1 to 1 correspondence between two graph-
s. In our experiments, we could determine isomor-
phism within a practical and stable time.

For further research, we have to examine oth-
er types of graphs, and analyse complexity of the
program for them. Also, we wish to compare our
results with practical running results of the best
algorithm described in [4] whose worst complexity
are known to have exponential time.

References

[1] K. S. Booth, “Isomorphism Testing for
Graphs, Semigroups, and Finite Automa-
ta are Polynomially Equivalent Problems,”
SIAM J. Comput., 7, 273 279, 1978

[2] D. G. Corneil, C. C. Gotlieb, “An Efficient
Algorithm for Graph Isomorphism,” J. ACM,
17, 51-64, 1970

[3] J.E. Hopcroft, J.K. Wong, “Linear Time Al-
gorithms for Isomorphism of Planar Graph-
s,” Proc. 6th Annual ACM Symp. Theory of
Computing, 172-184, 1974

[4] L. Babai, E. M. Luks, “Canonical Labeling of
Graphs,” Proc. 14th Annual ACM Symp. on
Theory of Computing, Boston, 171-183, 1983

[6] M. Agrawal, V. Arvind, “A Note on Decision
versus Search for Graph Automorphism,” In-
formation and Computation, 131, 179 189,
1996

[6] Y. Matsuda, H. Enohara, H. Nakano, S. Hori-

uchi, “An Algorithm For Generating Regular
Graphs”, IPSJ 92-A1.-25-3, 1992

[7] J. van Leeuwen, “Handbook of Theoretical
Computer Science, Vol. A: Algorithm and
Complexity,” Elseveir, 1990

0120

研究会Temp
－12－

