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A new method for splice site prediction is intro-
duced. It approximates the multiple correlations
among residuals in splice sites using all pairwise
correlations, and its computational cost for learn-
ing is O(m?n) where n is the number of examples,
each of length m. We show by computational ex-
periments that its prediction accuracy is superior
than previously reported Markov models for splice
sites’ prediction in human genomic DNA.

Introduction In eukaryotic genes, splice sites ex-
hibit specific signals to be recongnized by snRNA-
proteins, which cleave intron segments from pre-
mRNAs. Since the cleaved product forms actual
protein coding regions, the computer recognition of
these sites constitutes a crucial part in gene find-
ing systems [1], which are the heart of comparative
genomics.

Two types of splicing junctions are commonly re-
ferred as an acceptor (3’ splice site) and a donor
(5" splice site) site. Donor sites correspond to
the beginning of introns and contain GU, while
acceptor sites are the ending of introns, cotain-
ing AG (GU-AG rule). The present knowledge on
these sites in vertebrate is the rough consensus pat-
terns: 5'-AGJGUAAGU-3’ for donor sites, and 5-
PyPyPyPyPyPyNCAG|-3" for acceptor sites [2] (A
down-arrow denotes the site of cleavage. Py de-
notes pyrimidine base U or C, and N denotes any of
four bases).

The mainstream of splice sites’ prediction has
been first-order Markov models. Surprisingly, a
rather good result was already obtained with a
linear-chain Markov model [3]. Its prediction ac-
curacy could be only slightly improved with a more
general, tree-shaped Markov model [4], or with a
higher order decision tree model [5]. These results
suggest that Markov models are not sufficient for
improving splice site recognition.

In order to model distant multiple correlations,
we adopt a more general model called ‘Boltzmann
machine’ in neural network community. In its orig-
inal form, however, the model requires huge com-
putational cost for training [6]. For this reason,
Boltzmann machine has been practically inapplica-
ble for learning from large data, typically obtained
from genomic sequences.

This paper introduces the approximation scheme
of Boltzmann machine to obtain a suboptimal but
acceptable solution. We model the probability dis-
tribution with Bahadur expansion [7], which is an
representation of the probability distribution into
different levels of correlations. When it is truncated
at the second order, it gives a good estimate of the
original probability distribution with a reasonable
amount of computation: The cost of our method is
O(m*n), where n is the number of examples, each
of length m.

We will show in computational experiments that
its prediction accuracy is better than first-order
Markov models, including the tree shaped variant,
for splice sites’ prediction. The tree-shaped Markov
model is obtained by computing the correlations be-
tween states, finding the maximum spanning tree
by linking states of high correlations, and comput-
ing the conditional probability for each linked states
(thus Markovian). Throughout the paper, we com-
pare our model with two Markov models: linear
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chain Markov model, and its tree-shaped variant.
Note that the latter model was shown to produce
as good results as the higher order Markov model

by Burge and Karlin [4].

Maximum Entropy Modeling Let & =
(1, ,25), 2; € {0,1,2,---,5 — 1} denote a se-
quence of length n with S alphabets. For DNA
sequence, the number of alphabet S is 4 and the
residuals A C,G,T are coded into integers 0,1,2,3
respectively. The purpose of probabilistic modeling
is to obtain the underlying probability distribution
of sequences p*() from finite number of examples
@1,...,2N [8]. One simple way is to construct the
empirical distribution p(e) = %Zi\le I(® = a;)
where I denotes the indicator function whose value
is 1 if the equation holds and 0 otherwise. However,
except when the number of samples is close to in-
finity, p gives a very poor estimate of p*. Typically,
p gives a very sparse distribution whose value is 0
for most sequences. Thus, we have to smooth out
p to obtain a better estimate. In terms of informa-
tion theory, this “smoothing” amounts to maximiz-
ing the entropy of distribution.! In order to obtain
a good estimate, it is important to determine how
far the distribution is smoothed. Pushing it to its
limit, for example, it ends up with a truely ran-
domized distribution with the maximum entropy.
For this purpose, one must add constraints on p
to prevent the entropy from going too large. Typ-
ically, these constraints are derived from training
samples. This probabilistic modeling technique is
called “Maximum Entropy Modeling” (MEM) [9].

The moment constraints (i.e. mean and correla-
tion) are often used in MEM. Let rhg; and CAVS“]- de-
note the mean and correlation of examples: g =
N Tim lan = s), Coyy = % Xim Haw =
s)I(xg; = t). When we constrain the moments to
coincide with those of training samples, the max-
imum entropy modeling is formulated as follows:
Find p which mazimizes =, p(e)logp(a) such
that 32, I(x; = s)p(@) = risi, Do, I(wi = s)I(x; =
tp(e) = C'si,tj where Y, denote the sum over ev-
ery possible ®. It is known [9] that the optimal p
belongs to the parametric family

exp(—gp—l—ZAi:H,-S](xi =s)

i=1 s=0

p(e) =

n S—-15-1

+Z Z ZZ“’”U "ciza)l(scjzto

i=1 j=i4+1 s=0 t=0

where ¢ is a normalization constant determined
such that > p(®) = 1. When parameters 6 and w

"The entropy

—> . p(x)logp(x).

of distribution p is defined as

are determined such that the mean and correlation
satisfy the constraints, p(®) gives the maximum en-
tropy distribution. This parametric model of distri-
bution is known as Boltzmann machines [6] in neu-
ral network community. However, it is known that
the exact determination of 8 (in other words “train-
ing of the Boltzmann machine”) takes exponential
time with respect to the sequence length n [6]. So,
we need to apply some approximation to obtain a
suboptimal but acceptable solution.

Bahadur Expansion For approximated training
of Boltzmann machines, we will adopt the Bahadur
expansion of probability distribution [7, 10]. The
alm of Bahadur expansion is to expand the loga-
rithm of the empirical distribution p(@) into differ-
ent levels of correlations, as in the Fourier trans-
form. When this expansion is truncated up to
the second order, we obtain a suboptimally trained
Boltzmann machine, which gives good results in
practice. In this section, we will only describe the
method enough for the readers to reproduce our re-
sults. Detailed theoretical discussions are available
in other literatures [7].

First, let us define several notations to describe
the Bahadur expansion. Define a factorized func-

tion qpy(®) as

S—1 n
— H H[msi]l(fiZS)[l _ msi]l(xi#) (1)
s=0 =1
Also, for each x;, define a function
fsilwi) = (L(2;
By the Bahadur expansion, log p(&) is expanded as
z)+c+ stifsi(l“i)

ER)

esiyes fsi(@i) frj(25), (2)

= S) — T;’LSZ')/ Thm‘(l — Thsi).

log '1[1](
+ >
{syit#£{t,}

where 0 < s,t < S —1and 1 <i,57 <n. Also, the
coefficients are determined as follows:

log p(e) =~

¢ = qu ){log p(x) — log gy (=)}
dsi = Zf% {1Og p( ) lOg q[l](w)}
ey = z Lo ) o ) (@)l () — o g1y (2))

These coefficients include the sum over every possi-
ble @, but assuming that p(e) > 0, we can compute
¢ efficiently as

-+ > q[JL:kZ;){lOgﬁ(wk) —logquj(=x)} (3)
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Table 1: Learning results of 1174 donor sites, tested on 1140 positive, 222089 negative samples. Window

size is 15 bases (including GT), beginning from -5 position of the exon-intron boundary.

truncated Bahadur tree Markov chain Markov
Training | True test False test | True test  False test | True test False test
FN (%) FN (%) FP (%) FN (%) FP (%) FN (%) FP (%)
0 0.1754 77.99 0.08772 76.12 0.08722 82.51
1 2.018 18.68 2.456 26.18 1.667 25.39
2.5 3.772 13 3.947 19.57 3.509 17.6
5 5.614 10.55 5.877 14.54 6.842 12.46
10 10.61 7.301 12.63 8.967 11.14 8.807
20 20.35 4.155 23.16 4.845 21.32 4.803
25 26.05 3.229 29.56 3.674 27.54 3.543
30 31.58 2.487 33.16 3.034 33.25 2.775

Table 2: Learning results of 1166 acceptor sites, tested on 1211 positive and 321845 negative samples.

Sequence length is 15 bases (including AG), beginning from —10 position of the intron-exon boundary.

truncated Bahadur tree Markov chain Markov

Training | True test False test | True test False test | True test False test
FN (%) FN (%) FP (%) FN (%) FP (%) FN (%) FP (%)
0 0.2477 60.3 0 74.89 0.2477 60.46

1 0.7432 36.08 1.321 38.86 0.9909 33.87
2.5 2.477 25.83 2.642 30.05 2.23 26.85

5 4.707 19.6 5.945 21.62 4.955 19.82

10 9.001 13.07 11.23 15.44 10.07 13.26
20 20.07 6.46 22.71 8.645 22.3 6.544
25 25.76 5.201 27.09 7.119 27.99 5.149
30 32.37 3.959 31.38 5.69 33.61 4.081

Other coefficients d and e can be computed in the
same way.

Let us define logpygj(®) as the rightside of (2)
without higher orders. Typically, pp) is not a prob-
ability distribution, that is, > ppj(®) # 1. How-
ever, when normalized, pjy belongs to the paramet-
ric family of Boltzmann machines. Although ppy
does not give the exact maximum entropy solution,
the truncated Bahadur expansion pjg) gives a use-
ful approximation as will be shown in the following
experiments.

Computational Costs In learning with the Ba-
hadur expansion, three coefficients ¢, d, ¢ in (2) need
to be computed. It takes O(m?n) computational
cost, where m and n are the sequence length and
the number of examples, respectively. Note that
computing a log-likelihood logp(e) for each test
example takes O(m?) cost. The costs for other
methods are as follows: The linear chain Markov
model takes O(mn) for learning and O(m) for test-
ing (i.e. computing a log-likelihood). Also, the tree-
shaped Markov model takes O(m?n) for learning
and O(m) for testing. Thus, the learning cost of
our method is the same as that for tree-shaped

Markov model, except for the quadratic cost for
testing. This quadratic cost is indispensable as long
as all pairwise correlations are considered, mean-
ing our computational cost is optimal. In an or-
dinary situation, this quadratic term can be toler-
ated, since m is relatively small (e.g. m = 15 in our
experiment). When the number of examples n is
very large, O(n) term dominates the computation.
Note that other complicated learning methods may
take much larger cost: For example, in SVM [11], a
quadratic programming problem of n X n coefficient
matrix must be solved for learning.

Experiments A set of 2314 donor and 2377 ac-
ceptor sites were extracted as positive samples from
462 human genes. The set was randomly parti-
tioned into 50% training and 50% testing data: 1174
training and 1140 testing for donors, and 1166 train-
ing and 1211 testing for acceptors. Each dataset
was fed to the truncated Bahadur expansion model,
a tree-shaped Markov model, and a chain Markov
model, respectively. The occurrence of GT/AG sites
which are not splicing junctions were used as nega-
tive samples.

Table 1 shows the comparison of prediction accu-
racies for donor sites, consisting of 15 bases begin-
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Figure 1: The absolute parameter value |ws; +;| which illustrates the contribution of I(x; = s)I(x; = t).
The X, Y -axis correspond to the indices ¢, and s, as ¢ =4(j — 1)+ t+1landy = 4(¢ — 1)+ s 4+ 1,
respectively. The dotted line shows the boundary between residuals, and the blank bands correspond to
the fixed residuals GT or AG. A dark point shows high contribution to the probability distribution.

ning from —5 position of the exon-intron boundary.
Table 2 shows the accuracies for acceptor sites, con-
sisting of 15 bases beginning from —10 position of
the intron-exon boundary. Each table shows the
percentage of false positives and false negatives in
the testing sequences. Each testing sequence was
classified by the log likelihood computed in each
model, according to the threshold determined by
the ratio of false negatives in training samples. The
tables are formatted as in the article by Cal et al. [4]
The best scores among three models are shown in
bold letters. In both tables, the truncated Bahadur
model shows relatively better results over the two
Markov counterparts. The prediction accuracy of
Markov models for false negatives are consistent
with previously reported results.

In order to see that our method actually utilizes
distant correlations, we plot the absolute parameter
value |wg; ;| in Fig.1. Note that ws;; is derived
from ey ¢ as

ws,-,t]- = esi,t',- ﬁlsi(l — ‘ﬁ%si) 77%,5]'(1 — ﬁlt]‘).

The value |wg; ;| illustrates the contribution of
I(z; = s)I(z; =) in the obtained probability dis-
tribution. From this figure, we can read that many
distant pairs have high contribution both in donor
and accepter sites. Thus, distant correlations play
an important role in our method, whereas the con-
tributions are limited to neighboring residuals in
linear-chain Markov model.
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