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Improved Neural Algorithms for Knight's Tour Problems
Masato Aoba’, Yoshiyasu Takefuji

Abstract: The knight's tour problem has been well-known to mathematicians because it is considered
as a subset of the Hamiltonian circuit problem. Takefuji and Lee have used a neural network to solve
knight’s tour problem, however their method has a problem that the system often converges to a local
minimum. In this paper, we propose new three algorithms to improve Takefuji’s algorithm. We
compared the proposed algorithms with Takefuji’s algorithm. Our results show that the proposed
algorithms improve both the convergence ratc and the computauon time compared with Takefuji’s
algorithm.

1. Introduction
The knight's tour problem has been well-known to mathmaticians as a subset of the
Hamiltonian circuit problems and the procedure to find a tour is known as NP-hard [1].

* The knight's tour problem can be represented as follows. A knight has to traverse all of
the squares on a chessboard but each square once and only once and return to the originated
square. A knight can trace only eight routes as shown in Fig.1 and the figure also shows an
example of the tours for the 8x8 chessboard.

Fig.1. Legal paths of a knight and an example of knight’s tour
The first serious attempt to find a knight's tour was made by Euler in 1759 [2], and many
mathematicians tried to solve it as a general problem [3] [4]. Takefuji and Lee [5] have
used a neural network to find a knight’s tour for the general sized chess boards. In this
paper, we propose new three algonthms to improve Takefuji’s algonthm '
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2. Takefuji’s Algorithm
2.1. Neural Representation and Motion Equations

In their algorithm, the system requires p( )/ 2 hysteresrs McCulloch-Pitts neurons
where p is the number of squares. on #2 X n chessboard. The hysteresis McCulloch-Pitts
neuron model represents the fired neuron as V; =1 and the unfired neuron as ¥, =0,
where V; is the output of the ij th neuron. The state of ¥ is updated by the hysteresis
McCulloch—Pltts function; Vu( )—‘1 if U, ( )> Urep , 0 if U, ( )< LTP and
unchanged otherwise, where U, is the input of the 7j th neuron and UT P (Upper Trip
Point) is :always larger than LT P (Lower Trip Point). The ij th neuron is fired if the
knight moves from the i th square to the j th square. Only the upper triangular elements in
the two-dimensional array are used for the relation V V .

N

“The motion equation for the if th neuron is represented as follows

P i
- ‘(Zl/ikdik‘z]”(zlfk/dkf‘z) ifd,=1 ‘
7 k= ' k=1 ‘ o (D
0 2 if dij =0 |
where d,, =1 if the movement from i th square to the J th square is legal, and
d i = 0 otherwise. The state of U J is updated by using the first order Euler's method at
each iterative step. o '

2.2. Problems in Takefuji’s Algorithm ‘ .

In Takefuji's algorithm, the system easily converges to the local minimum Whose
solution has more than two subtours, especially for a large sized chessboard. In Takefuji’s
algorithm, once the system converges to the local minimum, the network state has to be
initialized and be recalculated.

3. The Proposed Algorlthms
3.1. Basic Ideas '

The basic ideas are very srmple When the system converges to the local minimum with
more than two subtours, the followmg 1deas can be used to solve. the problem;

1. cutting subtours, - A '

2. connecting subtours thh each other, and ‘

3. cutting and connectmg subtours at the same tlme o

3.2. Motion Equatlons ‘

At ﬁrst the system uses Takefu_u s algonthm to find a kmght s tour. When the systemA
does not converge to the local rmmmum with more than two subtours, prev10us ideas are(‘
not employed. If the system converges to the local rmmmum one of these ideas is
implemented by a new motion equation. : :



Algorithm 1. Cutting subtours for fired neurons: .

du, > ’ i
=-Flogd| > d, -2 d, -2 |+1 @
dt k=1 = ) , 1
Algorithm 2. Connecting ,;subtours for unfired neurons:‘
~ = Flog (Zdﬂ( —zJ(dej—zJu e (3)
dt , ‘ k=l k=1 S , o

Algorithm 3. Cutting and conheeting subtoﬁrs:
Eq.(2) for fired neurons and Eq.(3) for unfired neurons.

where F' is an arbitrary constant.

4. Expenments

The average number of iterative steps is less than 100 steps in Takefujl S algonthm [16].
Thus we define the upper limit of the number of iterative steps as 100. We tested all of the
algorithms until 100 correct solutions were obtained for the following chessboards;6x6, 8x8,
10x10, 12x12, 14x14, 16x16, 18x18, 20x20 and 22x22.

The total number of iterative steps is calculated as a summation of the steps unt11 getting
i'equlred number of correct results and it includes failure in convergence. Note that the rate
of the total number of iterative steps mostly means the rate of the computation time.

Fig.2 and Fig‘.3 show the experimental results respectively. Fig 2 shows the
convergence rate. Fig.3 shows the total number of iterative steps. On the right side of the
Fig.2 and Fig.3, the compaﬁson rates with Takefuji’s algorithm are plotted. The
comparison rate is defined as the result of dividing the value of the proposed algorithm by
that of Takefuji’s algorithm.
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Fig.2. Convergence rate
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Fig 3. Total number of iterative steps

5. Discussion

Fig.2 and Fig.3 show that the proposed algorithms improve both the convergence rate
and the total number of iterative steps especially for large sized chessboards.

In the experimental results, the proposed algorithm 1 is the best method especially when
the size of the chessboard is large. We can predict that the proposed algorithm 1 is more
efficient when the size of the chessboard becomes larger. We expect the reason for that as
follows. When the number of squares is p , the system requires p(p - 1)/ 2 neurons. If
the system converges to the correct solution or the local minimum, p neurons are fired. In
other words, only 2/ (p—l) of the whole neurons are fired and most of the neurons
( p( p- 3)/ 2 neurons) are unfired. Thus, in the proposed algorithm 2 and 3, when the
system converges to the local minimum, the “connecting subtours” procedure stimulates
too many neurons by the motion equations and the state of the network translates further
from a solution of the problem than the proposed algorithm 1.

6. Conclusion ;

Our experimental results show that the proposed algorithms improve the convergence
rate and the computation time. The most efficient method is cutting subtours (the proposed
algorithm 1).
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