HEEA BRONEER
IPSJ SIG Technical Report

MRS

2003 —MPS—45
200376724

WMEBALY FESICKYERBINSF vy 2D
TIVFRALy R70O€ v S OMEEE

HIRONORI NAKAJO ,t MASANORI YAMATO ,* SHOJI KAWAHARA ¥t
NoriTO KATO ,* KOICHI SASADA ,# MIKIKO SATO *
and MITARO NAMIKI

Currently, multi-threaded architectures such as chip multi-processor and SMT (Simulta-
neous Multi-threading), which exploit TLP in addition to ILP, are in a hot topic. In such
architecture, however, simultaneously executed threads cause conflicts in cache entries among
threads, thus it may degrade efficiency of cache. In this paper, we propose an LTN based
replacement strategy that utilizes thread number: Logical Thread Number (LTN) managed
by OS in order to control a thread to be replaced in cache entry. We have evaluated our
proposed strategy by simulator MUTHASI. Since it is not necessary to add so much hardware
resources for the LTN replacement strategy, it is expected that the LTN based replacement
strategy brings high hit ratio without expansion of chip area.

1. Introduction

1.1 Multiprocessing and a chip multi-

processor

It is getting common that a symmetric multi-
processor (SMP) -with two, for or more proces-
sors is utilized as a server machine in a class of
high-end PCs. Moreover, some motherboards
which holds dual processors are getting avail-
able with inexpensive costs, thus ordinary users
can utilize the ability of parallel processing.

However, the more the number of processors
increases, the more-electric power is needed. If
a license of an operating system is needed for
a single processor, the cost of multiprocessing
system cannot be ignored.

While a process rule of semiconductor is get-
ting more small, some processor vendors have
been trying to implement general purpose chip
multiprocessors which hold multiple processors
in a single chip.

Chip multiprocessor technology has been al-
ready applied to an application specific usage
such as network processing. Furthermore, in re-
search levels, there have been many researches
on chip multiprocessors such as Hydra of Stan-
ford?), Power4 of IBM2) and so on. However,
only coupling multiple processor cores into a
single chip cannot achieve higher performance,
therefore some integration are needed such as
memory or input/output technologies.

| RRATKFTEEERIZI o —2a v IT¥H
Department of Computer, Information and Commu-
nication Sciences, Tokyo University of Agriculture
and. Technology
tt NEC 2V a2 AT LSRR
NEC Silicon Systems Research Laboratories

1.2 Emergence of Simultaneous Multi-

threading (SMT)

In the situation mentioned above, Simultane-
ous Multi-threading (SMT) architecture which
can achieve higher performance even with a sin-
gle processor has emerged recently.

Multi-threaded architecture, which was first
introduced in release of HEP which was de-
signed by Burton Smith, aims latency hiding
that switches threads executing an instruction
which causes a long access latency. Based
on multi-threading technology, SMT, which
combines ILP and TLP and executes multi-
ple threads efficiently has been proposed as a
new technology which utilizes unused resources
maximally. i

A very long instruction word (VLIW) archi-
tecture is currently available as a multiprocess-
ing technology which utilizes multiple resources
at a instruction level. However, there are sig-
nificant common problems in compiler develop-
ment and different instruction sets are needed.
On the other hand, SMT utilizes an existing
instruction set though supports of an operating
system and a compiler are necessary,

Recently, Intel has released Hyper Thread-
ing®) which is developed in a project called
Jackson. Hyper Threading, dispatch two
threads to a single processor, is a first pro-
cessor which implements an SMT technology.
From the point of view of an operating system,
though a system is equipped with just a single
processor, two processors were seemed to be ex-

(10)

ecuted simultaneously.: However, performance .

gain of Hyper Threading is expected up to 10
— 30 percent, because each internal bus, cache
memory, operation unit and. execution unit is
just equipped in a processor solely.

In such SMT architecture, however, simul-

taneously executed threads cause conflicts in
cache entries among threads, thus it may de-
grade efficiency of cache.

Thus, we propose a cache replacement strat-
egy which utilizes thread number: Logical
Thread Number (LTN) managed by OS in or-
der to control a thread to be replaced in cache
entry.

We have evaluated our proposed strategy by
simulator MUTHASI (MUlti-THreaded Archi-
tecture SImulator). Since it is not necessary
to add so much hardware resources for the
LTN based replacement strategy, it is expected
that the LTN based replacement strategy brings
high hit ratio without expansion of chip area.
We have been also developing a chip multi-
processor based on an SMT architecture called
OChiMu$ (On-Chip Multi-SMT).

2. Architecture of a target SMT pro-
cessor

2.1 Concept of a thread

A thread is defined as a series of instructions
and a process is a set of one or more threads
which share the same memory space in the same
process.

We propose a processor architecture sup-
ported with virtualization of a thread manage-
ment in which system software doesn’t need
to manage assignment status of a Program
Counter (PC) or a logical thread and free PC’s.

Data
Load/Store| [17ag7 Store Cache Execution
N Unit

Interface [Result Buffer|

Station

sqry wrdsia

(b)Architecture thread oriented part

Fig.1 Configuration of a targeted SMT processing
element

For this reason, we also propose a manage-
ment method which cooperates with an oper-
ating system with dividing threads into logi-
cal threads and architecture threads. A logical

thread is a thread managed by system software
and an architecture thread is a being executed
thread allocated into a PC.

2.2 Processor configuration

Figure 1 shows a configuration of a targeted
SMT processor. In this architecture, each ar-
chitecture holds resources as follows.

e Program Counter (PC)

e Program Counter Status Register (PCSR)

o Logical Thread Number Register (LTNR)

o Register File (RegisterFile)

Program Counter Status Register (PCSR)
holds a status of being executed thread. Logi-
cal Thread Number (LTN) is stored in a Logical
Thread Number Register (LTNR) and referred
in a thread control instruction. Each PC has its
own instruction cache and data cache is shared
among all PC’s.

2.3 Thread control

A thread control instruction specifies not a
PC but an LTN. For example, in the case of

" thread allocation, hardware searches a free PC

which is not assigned with a logical thread then
assigns the thread to the PC when exists. When
there is no free PC, the instruction fails. In
other cases of thread instructions, a PC which
is assigned with LTN is searched and the thread
control instruction is issued if it exists, other-
wise it fails.

By management of LTN by hardware, system
software doesn’t concern whether a PC is allo-
cated with a thread or which thread is allocated
to which PC.

On the contrary, without this mechanism, in-
formation of which logical thread is allocated
to which PC should be kept in memory and
be referred in each time of management of a
thread, thus it causes a significant overhead of
a thread management. Consequently, a thread
management with using LTN seems to be effec-
tive in a multi-threaded processor especially for
fine grained applications.

3. LTN based replacement for cache of
an SMT architecture

As a problem caused by sharing data cache
among threads in a processing element (PE),
when multiple threads are executed in a PE,
accessing the same entries frequently occurs in
a multi-threaded architecture. Thus cache miss
caused by conflicts increases, which brings sig-
nificant cache miss penalty in accessing data.
Therefore, in a multi-threaded processor, effects
of cache would degrade by cache replacement
which is seldom in a single-threaded processor.

In order to overcome the problem, increasing
capacity of cache or associativity may effective,
however, it would brings increase of a size of a
chip and access latency, thus performance gain
cannot be expected against additional hardware

resources.

We propose a cache replacement strategy us-
ing Logical Thread Number (LTN). By utiliz-
ing LTN when specifying a way to be replaced,
since a way to be replaced is fixed dependent
of a PC which is allocated to a thread, the way
is not influenced by a thread context. We call
the proposed strategy LTN based replacement.
Figure 2 shows the concept of an LTN based
replacement.

In the LNT based replacement, when the
number of ways which can be replaced is N, it
is called as N set LNT based replacement. For
example, in a 4 way set-associative cache, when
one bit is used for modulo of LTN and the possi-
ble numbers of ways to be replaced for one LTN
is two, we call it 2 set LTN based replacement.

Index
0 Entry
1 Eatey .
2 by Y Thread 0
-"way0| DataBlock
i g way 1| DataBlock
Entr y access
. way 2| DataBlock
.. way 3| DataBlock
N
Entry roplace Thread 1

Fig.2 LTN based replacement strategy

4. Simulation based evaluation of

cache

We have evaluated cache memory of a multi-
threaded processor with a multi-threaded ar-
chitecture simulator called MUTHASI (MUlti-
THread Architecture SImulator) comparing a
proposed LTN replacement with LRU.

MUTHASI is an instruction level simulator,
which based on MIPS R4000 architecture with
thread control instructions, that can exactly
simulate each stage of pipeline in a multi-
threaded processor and can easily change the
number of PCs.

We have adopted an own developed thread
library called MULiTh® which is applied to
thread instructions based on a POSIX thread.

4.1 Evaluation of 2 way set-associative

Figure 3 shows a result of a multiplication of
a 64 x 64matrix. In the graph, the vertical and
horizontal axes mean the number of execution
cycles and the size of cache in some numbers of
PCs respectively.

From the result, LTN replacement is inferior
to LRU, however, except for the single PC with
cache sized of 16KB, performance degradation
is around 1 % in this size of matrix.

Next, a result of multiplication of matrix
sized 256 x 256 is shown in Figure 4. Totally, it
is found that the LTN replacement is effective

except for the case of the 32KB sized cache. Es-
pecially, in the cases of the size with 64KB and
128KB, performance gain is large. '

4500000

Time(cycle)

PCNum 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
16(kb) 32 (kB) 64 (kB) 128 (kB)
Cache Size

Fig.3 64 x 64 matrix multiplication of 2 way

Amount of data accessed for a matrix is
256KB(=4byte x 256 x 256) which exceeds the
capacity of cache.

400000000

2R

Time(cycle)

200000000

150000000
PCNumj 2 4 8 1 2 4 §
16 (kB) 32 (kB)

Fig.4 256 x 256 matg;cch;rf{ﬁtiplication of 2 way

124 8 1_2 4 8
64 (kB) 128(kB)

4.2 Evaluation of 4 way set-associative

5 shows the result of a matrix multiplication
with 4 way set-associative cache.

In the case of cache capacity with 16KB, per-
formance degradation in the case of one and two
PCs, however, the performance is almost same
in other cases. Moreover, there is little differ-
ence between 2 set and 1 set LTN replacements.

Figure 6 shows a result of multiplication of
matrix sized 256 x 256.

From the results, LTN based replacement is
tend to be superior to LRU one. As the case
of 2 way set-associative, the more the amount
of accessed data is, the more effective the LTN
based replacement.

4500000

Time(cycle)
g %

2000000

PCNum 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
16 (kB) 32(kB) 64 (kB) 128(kB)

Fig.5 64 x 64 matry maltiplication of 4 way

Furthermore, single set LTN based replace-
ment is faster than 2 set LTN based one. Es-
pecially, in 4 PCs with cache sized 128KB,
though 2 set LTN based replacement is 12%
faster than LRU, 1 set LTN based replacement
is 26% faster than LRU one.

400000000 £

350000000 £

300000000

250000000

Time(cycle)

150000000
100000000

50000000

PCNum 1 2 4 8 1 2 4 8 1 2 48 1 2 4.8
16 (xB) 32 (kB) 64 (KB) 128 (kB)

Fig.6 256 x 256 matrix multiplication of 4 way

5. Implementation of LTN based re-
placement

In order to implement LTN based replace-
ment, following additional hardware resources
are needed.

o A bus for transferring lower one or two bits

of LTN modulo to a load store unit.

o A buffer in each entry for storing LTN mod-
ulo in a dispatch queue and load store reser-
vation station.

o Signal lines for LTN modulo in a data re-
quest bus. :

Especially, no tag space is needed for LTN
based replacement, it is possible to implement
in low costs because additional hardware for
above resources is sufficiently small comparing
to an area of a processor core.

Though there are 64 bits bus, 32 bits for ad-
dress and the other 32 bits for data, for memory
accessing, additional bus from one to 3 bits are
significantly small. Consequently, additional

bus is less than 1% in a whole processor core,
thus it is sufficiently small for performance gain.

6. Conclusion and Future work

In this paper we have proposed a new cache
replacement strategy called LTN based replace-
ment. We have evaluated the strategy by in-
struction level simulator MUTHASI and found
that the larger data size increases the more
speed up is gained by the strategy with less
hardware costs against LRU.

We have been designing an SMT procossor
with the cache replacement strategy. Moreover
we have been studying a chip multiprocessor
called OChiMuS (On-Chip Multi-SMT). :

Regquirements for implementation of OChiMuS
from the viewpoints of a system architecture are
shown as follows.

o Integration of memory architecture which
is significantly important in an SMT archi-
tecture.

o Fast synchronization which makes use of
advantages of an SMT architecture.

o Specification of roles of thread management
between an operating system® and an ar-
chitecture.

Concerning a compiler, it is efficient to uti-
lize various parallelizing technologies which are
built in existing SMP.

In order to aim a general purpose and
speedup of threads in multitasking, a dedi-
cated operating system, a specialized compiler
and also programming languages should be dis-
cussed for the future high performance comput-
ing.

References

1) L. Hammond, B. Hubbert , M. Siu, M. Prabhu
, M. Chen , and K. Olukotun: The Stanford Hy-
dra CMP, IEEE MICRO Magazine, 2000, and pre-
sented at Hot Chips 11, 1999

2) J. Kahle: Power4: A Dual-CPU Processor Chip,
Microprocessor Forum’99, 1999.

3) http://www.intel.com/technology /hyperthread/

4) “Implementation and Evaluation of a Thread Li-
brary for Multithreaded Architecture”

K. Sasada, M. Sato, S. Kawahara, N. Kato, M.
Yamato, H. Nakajo and M. Namiki, .

Proc. of International Conference on Parallel and
Distributed Processing Techniques and Applica-
tions (PDPTA 2003) (2003) '

5) “A Process and Thread Management of the Oper-
ating'System “Future”for On Chip Multithreaded
Architecture”

M. Sato, K. Sasada, S. Kawahara, N. Kato, M.
Yamato, H. Nakajo and M. Namiki,

Proc. of International Conference on Parallel and
Distributed Processing Techniques and Applica-
tions (PDPTA 2003) (2003)

