2003 —MPS—45 M
200376724

HEEA HRLEER RS

IPSJ SIG Technical Report

Ayt — BEDSBEMED - D DAFINE T TS LS I 1L — 2 DR

KAEN, nB B, TREHE
RERRIKRE T FHRaIa=r—va v ITEH

BEEFIHRT O I AD—=DTHEAyE—IRy Y Y FHRDT O 5 LT, 2 vt~V OFRR
WEERBIEN 7O 7 ADWEREICKE (HEEL, EROLTIEEHRRE CMROFMEISRETH 5. K
WCH, A=Yy oy FAROEFIGET O T LD A vy — VBIEIL L BHBANOFELFMT 5
DY IA V- FSRBIIOVTRETS. AR LAY I oL -9 2HVWAREERICL), BIEREI
BILHDENVKFELZWTUY I AL BEEEIERICKEEFT 707760V 32— a v O
BEEAN, v Iab—S0FMELMES 2B, ‘

A Simulator for Message-Passing Based Parallel and Distributed
Programs to Evaluate the Influence of Message Transfer Latency

- Yoshihisa Amakata, Yuji Shinano and Mario Nakamori
Department of Computer Science,Tokyo A&T University

Abstract Within the family of parallel and distributed programs, those that are based on message-passing
are frequently characterized by unpredictable delays in message arrival times, which lead to significant
differences in program performance. This paper reports the development of a simulator that measures
program performance under parallel and distributed computing environments with variable parameters.
Also, two types of numerical experiments are presented: one that was conducted on a program of matriz
multiplication whose performance does not depend as much on communication delays and another exper-
iment conducted on a program of branch and bound technique whose performance is more dependent on
communication delays. Both ezperiments were performed in the simulator presented here, as well as in
a real PC cluster environment. Through these numerical experiments, the cffectiveness and problems of
the simulator are discussed.

in the simulator. Finally, through comparing
the ‘above numerical experiments, the effec-
tiveness and problems of the simulator are
discussed. : ‘

1 Introduction

As parallel and distributed computing envi-
ronments such as the PC cluster or the GRID
become more popular, high performance par-
allel and distributed programs (hereafter, ab-
breviated simply as parallel programs) be-
come increasingly more necessary. Among
such parallel programs, those that are based
on message passing frequently demonstrate
unpredictable delays in message arrival time,
which lead to significant differences in pro-
gram performance. Therefore, performance
evaluation of message passing parallel pro-
grams has become an important research
topic, -and -a wide variety of research ap-
proaches have been proposed[2, 3, 4, 5]. In
order to evaluate the performance of a par-
allel program, the authors have developed
software that simulates the execution of pro- o New processes can be spawned to an-
grams using a message passing library in other computer by sending an invoking
a parallel environment. In this paper, an message. '

overview of the simulator is given at' first. : ‘
Then, results are presented from numerical
experiments on a PC cluster environment.

2 Simulator Prototype

The following assumptions are made for the
target parallel program whose performance is
to be evaluated by the simulator: -

o Each computer has one execution task.

e “Non-blocking - send”, “blocking re-
ceive”, and “non-blocking receive” are

- all available message passing methods.
More specifically in receiving, "selective
receive” is available depending on the
message tag or the sender process.

The simulator is implemented in Java and
an abridged Java interface of the message-

These experiments were carried out in order
to verify message passing parallel programs

passing library for PVM (Parallel Virtual
Machine) was also developed.

2.1 The simulation model

A model presented for the execution and sim-
ulation of programs using a message-passing
library in a parallel environment. The par-
allel computation environment is modeled by
discrete event simulation with sequential di-
rect execution. The model used is much sim-
pler than that presented in [2, 3, 5], because
the target machine for the first prototype sim-
ulator was a sequential computer.

The target computer is modeled as a log-
ical computing resource in the simulator and
the execution processes are modeled as logi-
cal processes(LPs) each of which has its own
ID. There is a one-to-one correspondence be-
tween the logical computing resources and.
the LPs, which is based on the aforemen-
tioned assumption on the target parallel pro-
gram.

Processes of message-passing parallel pro-
grams send, receive and interpret messages to
each other. The path of such message-passing
is modeled in the simulator as a logical com-
munication channel through which messages
are passed among LPs. The values of three
parameters can be set in the simulator: a)
the delay of signal transfer, b) the delay de-
termined by the transfer rate, and c) the over-
head of message processing. These parameter
values can be set independently among target
computers.

The delay of signal transfer ¢;, which is the
overhead in the beginning of the transfer, is
calculated as t; = ag where C is the signal
transfer speed [m/sec], D is the distance of
the transfer [m], and « is the coefficient of
the delay of the signal transfer. The band-
width delay of the communication channel is
calculated as t; = i3 ., where S is the size
of the messages [biti/:/ and W is the transfer
rate [bit/sec]. Denoting the constant of the
overhead time for the preparation of the mes-
sage transfer by t., we have for the time t,,
of message transfer t,, = t; + tq + t. .Finally,
the time t, required for generating a process
is expressed as ty = t; + t; +t. , where the
constant t, is the time required for starting a
process. .

As the: parallel computation is simulated,
each LP'is executed sequentially on a sin-
gle computer. There is, however, dependence
among processes, which sometimes causes
process interruption. Therefore, physical
time of execution of a process is not contin-

uous. The interruption time of a process in-
cludes the execution time of other processes
and the waiting time of that process for mes-
sages from other processes. That is why the
simulator has to manage the time of each LP,
which is hereafter called virtual time.

Processl Process2

Figure 1: Simulation on a single sequential
computer

2.2 An example of a simulation

Let us consider a parallel program, which
consists of two execution processes. Suppose
that messages are passed as shown in Fig-
ure 1, where all receives are “blocking re-
ceives”, and the shaded area represents the
waiting time for sending/receiving messages.

Figure 1 shows how the simulation is ex-
ecuted sequentially on a single computer in
a physical time. Virtual time advances only
along broken arrows.

2.3 The architecture of the simula-
tor ,
Figure 2 depicts the simulator architecture.
The simulator manages all LPs as an “exe-
cute” process and “wait” processes in a prior-
ity queue. “Wait” processes are executed ac-
cording to their priority. The “execute” pro-
cess is connected respectively to each “wait”
process in the queue by a logical channel.
Also, there is a one-to-one correspondence
between LPs and logical computer resources.
Each computer resource maintains a message
queue in order to buffer messages from other

LPs. : ' «
In order to make sharing the execution

code and switching LPs easier, the LP is im-
plemented as a light one. The virtual time of
a LP is calculated by the last execution time
and the time when a message is received.. A
LP having the oldest virtual time is executed

wait process

B @ priority queue
execute , . >
process , m

Figure 2: The architecture of the simulator

first, and then the virtual times of all LPs are
renewed. :

3 Computational
Experiments

In order to evaluate the performance of the
simulator, computational experiments were
conducted using two typical parallel algo-
rithms in two different environments and the
results were compared: one environment is a
PC cluster; the other is the simulator on the
PC cluster where the number of PCs were
limited to one, which is equivalent to a sim-
ulator on a single computer. The difference
of each result is evaluated using the value F
as follows: E = (Ts — T;)/T, ,where T is
the time measured by the simulator and T, is
running time in the PC cluster.

The PC cluster is composed of 15 comput-
ing resources, each resource has PentiumlIl
400MHz processor and 256MB main memory.

Table 1: Simulation parameters of the PC
cluster

parameter value

transfer rate W[Mbit /s] 30
overhead time of transfer t.[us] : 300

task generating time £g4[s] 0.7
transfer distance Dim] 2

signal transfer speed C[m/s] 3 x 108
coefficient, of the delay of signal transfer & 3

First, a preliminary experiment was con-
ducted in order to measure the performance
of communications and with that experiment
the system parameters were determined as in
Table 1 from the measured values and some
theoretical characteristics. The value of the
coefficient « of the delay of signal transfer
was set to three because three TCP/IP pack-
ets(SYN, ACK/SYN and ACK) are necessary
for establishing a connection.

3.1 Matrix multiplication

As a typical example in which the message
transfer delay does not affects the perfor-

mance of the parallel program so much, a par-
allel algorithm of square matrix multiplica-
tion was implemented. Each slave computes
the divided part and returns the result and
the master combines the individual results
from the slaves. ‘

-
j=3
(=]
|

-
o
E:

-
oo

Computation time on the simulation[s].
",

1 10 100
Computation time on the PC cluster(s].
Figure 3: Average computational time of ma-
trix multiplication by PC cluster and simula-
tor

The computation was performed for a
number of slaves p equal to 2, 6 and 11, and
for a size of matrices n equal to 200, 400, 600
and 800. Each computation was performed
on the simulator and on the PC cluster and
the experiment was executed ten times for
each environment. The average computa-
tional time is summarized in Figure 3, where
the broken line along the diagonal is the the-
oretical computational time.

The correlation ratio of the average com-
putational time on the PC cluster and on
the simulator is 0.99, the mean value of F
is —0.14 and the variance of E is 0.02. This
shows that the simulator provides a high pre-
cision prediction when the delay of commu-
nication transfer has little effect on the char-
acteristics of the algorithm.

3.2 Branch and bound method

As a typical example in which the delay
of message transfer has a larger effect on
the performance of the parallel program, a
branch and bound method for the 0-1 knap-
sack problem was implemented and numerical
experiments were conducted.

The = algorithm of the slave process
branches the subproblem received from the
master process in depth first search and
renews the incumbent value of all other
slave processes, when its incumbent value
is renewed. Also, the algorithm bounds
each branched subproblem by the upper

bound obtained by a simple continuous re-
laxation. When the slave process completes
all searches, it sends the incumbent value and
incumbent solution to the master process and
terminates.

Problems were generated by the advanced
generator in Knapsack Problems Generation
of test instances [1]. The number of items
is 100, 250, 500, 750, 1000, 1250, 1500, 1750
and 2000, for each of which a random number
generator generated ten problems, so that the
utility and the weight of the items have no
correlation.

—
o
o

—
o

—

Computation time on the simulator(s}.
)

1 10 100
Computation time on the PC cluster|s).
Figure 4: Computational time of branch and
bound method by PC cluster and simulator

107

Number of branching on the simulator

10° F e

10 w0t 10 10° 1’

Number of branchiﬁg on the PC cluster
Figure 5: The number of branching of branch
and bound method by PC cluster and simu-
lator

The relation between the computational
time by simulation and that by PC cluster
is depicted in Figure 4. Also, the relation
between the number of branching by simula-
tion and that by PC cluster is shown in Fig-
ure 5. The mean value of F is —0.31; the
variance of the 'E is 0.04 and the number of
branching is almost proportional to the com-

putational time. In the simulator, there is
no high communication traffic and therefore,
the incumbent values are transferred quickly,
which result in earlier bounding and makes
the number of branching less.

4 Concluding Remarks

A simulator has been implemented, which
predicts the computational time almost ac-
curately, if the target program is not heav-
ily affected by message communication de-
lays. The simulator can also predict theoret-
ical computational time under an ideal com-
munication environment, if the target pro-
gram is largely affected by the delay. Hence,
the developed simulator is effective especially
for predicting the performance of a parallel
program under an ideal communication envi-
ronment. The simulator requires an execu-
tion time at least proportional to the number
of processors of the target parallel environ-
ment, which makes future research necessary
in.order to accelerate the simulator(e.g., by
parallelization).

References

[1] Knapsack problems generation of test in-
stances.
www.diku.dk/pisinger/codes.html.

[2] R.Bagrodia and R. Meyer. Parsec: A par-
allel simulation environment for complex
system, 1998.

[3] Rajive Bagrodia, Ewa Deeljmai, Steven
Docy, and Thomas Phan. Performance
prediction of large parallel applications
using parallel simulations. In Principles
Practice of Parallel Programming, pages
151-162, 1999.

[4] Adriana Iamnitchi and Ian T. Foster.
A problem-specific fault-tolerance mech-
anism for asynchronous, distributed sys-
tems. In International Conference. on
Parallel Processing, pages 4-14, 2000.. .

Sundeep Prakash, Ewa Deelman, and Ra-
jive Bagrodia. Asynchronous parallel sim-
ulation of parallel programs. Software En-
gineering, 26(5):385-400, 2000.

=

