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Reduction and Classification of Input Parameters for Large-scale
Simulations
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Abstract An integrated management system for simulation cycles has been developed and
performed. However, the existing management system often requires complex operation for
data management. We investigate an autonomous agent system that advises the simulation
users about management operation for large-scale simulations. Specifically, we develop an in-
put parameter customizing agent which is a part of the agent system. As the first prototype
of the agent, we analyze input parameter sets for large-scale simulations at JAERI Kansai
Research Establishment Advanced Photon Research Center. In this paper, we propose an
input parameter analysis method; input parameter sets are reduced to smaller dimensions
using Principal Component Analysis (PCA), and classified using Learning Vector Quanti-
zation (LVQ) according to simulation types. The validation of the input parameter analysis

method is presented by experiments.

1 Introduction

Large-scale simulations are performed in various re-
search fields thanks to the inexpensive simulation
costs. An integrated management system for sim-
ulation cycles. However, special system procedures
are required for the simulation users because they
require knowledge about the simulations in detail.
An autonomous agent that advises the simulation
users on management operation for large-scale simu-
lations. We designed and implemented a prototype
agent system for large-scale simulations in JAERI
KRE APRC (Japan Atomic Energy Research Insti-

tute Kansai Research Establishment Advanced Pho-
ton Research Center) as a first step towards address-

ing this need.

The “progressive parallel plasma” program has
been developed and executed on massively parallel
computers at JAERI KRE APRC. They have also
developed the “P-cube support system” to integrate
and manage the simulation cycles. The system is
not quite useful because the results of the simula-
tion experiments can not be efficiently stored on data
servers, and the choice of input parameters for the
system is extremely complicated. Thus we investi-
gated an agent system which learns complex man-
agement operations and collects and applies informa-
tion for large-scale simulation cycles autonomously
and automatically [1]. The system includes at least
two kinds of agents; an autonomous control agent and
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an automatic learning agent. The autonomous agent
saves data to data servers efficiently. The automatic
learning agent chooses custom input parameters. We
have started the implementation of an autonomous
control agent called the “parallel I/O control agent”
[2]. In this paper, we propose an automatic learning
method using LVQ (Learning Vector Quantization)
and evaluate its capability.

The input parameters for the simulation construct
a vector space. The simulation target depends on the
values of the vector space. In other words, spatial lo-
cation in the vector space represents the purpose of
the simulation. Therefore, LVQ can be used to clas-
sify the vector space. However, it takes a long time
to compute them and huge memory to classify the
original dimensions. We propose a two-step method;
we apply PCA to transform them into smaller dimen-
sions, and then apply LVQ to the reduced dimensions.
Using this method, they can be classified by simula-
tion type with reduced cost.

The rest of paper is organized as follows. In Sec-
tion 2, we explain input parameters for the P-cube
support system. In Section 3, parameter reduction
using PCA is presented and evaluated. In Section
4, parameter classification by LVQ is proposed and
evaluated. Section 5 concludes this paper.

2 Input Parameters for the P-
cube Support System

2.1 Overview of input parameters

Simulation users at JAERI KRE APRC have to set
input parameters in each of the six categories de-
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scribed below. The input parameter set consists of
about two hundred fifty different values.
e Parameters for temporary directories and execu-
tion conditions
e Parameters for rendering regions of calculation
results
e Parameters for visualization
e Parameters for electric charge, number density,
and temperature of ions

e Parameters for electric charge, number density,
and temperature of electrons

e Parameters for the features of the laser

Finally, we extracted twelve main parameters out
of two hundred fifty based on the above six categories.
The twelve main parameters depend on simulation
types. We expect that LVQ can classify input pa-
rameters by simulation type.
2.2 Problems in Input Parameter Set-

tings

As explained in Section 2.1, there are about two hun-

dred fifty kinds of input parameters for the simu-

lations at JAERI KRE APRC. Various simulations
are performed with the progressive parallel plasma

program. The number of combinations of input pa-
rameter sets becomes large because input parameter
values are different for each simulation type. It is im-
possible for users to set input parameters if they do

not know the simulation in detail.
The simulation users have to set input parame-

ters for the large-scale simulation with the progressive
parallel plasma program using their empirical sense

because no rules for the selection have been found.
0, most users can not determine appropriate param-

eter sets for their simulation purpose. As a result,

execution error often occurs. o
We propose an input parameter customization

agent with automatic learning which provides and
complements input parameter examples and given
parameter values sets, respectively. The input pa-
rameter customization agent has to know the sim-
ulations in detail. Rule-based learning is difficult
because the dependences among parameters are too
complicated. The agent should learn from many
given patterns of input parameters sets and obtain
the resultant knowledge automatically.

We adopt LVQ for the automatic learning capabil-
ity. By classifying input parameters sets by simula-
tion type with LVQ, it becomes possible to associate
unknown input parameter sets with proper simula-
tion types which users want to perform.

2.3 An Agent for Choosing Input Pa-
rameters

The computation cost of LVQ execution becomes ex-

pensive for learning many input parameter patterns

although we have reduced the two hundred fifty input

parameters to twelve. We need another technique for
the reduction of twelve input parameters to reduce
the LVQ execution cost.

Table 1 shows the names and the descriptions of
the twelve main parameters. The above twelve pa-
rameters may have some dependences between them
because we did not extract them from the specifica-
tion of the progressive parallel plasma program but
from the simulation types. To remove the depen-
dences, we apply PCA to the twelve parameters, and
obtained the minimum parameters.

3 Applying PCA to Input Pa-
rameters

3.1 PCA

PCA [3] is a statistical technique which performs

a linear transform of data into an orthogonal non-

correlated base to maximize the variance of the orig-

inal data. PCA transforms data into fewer dimen-
sions for examining relationships between several val-

ues while keeping the original information from the
reduction.
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Figure 1: the cumulative proportion

3.2 Applying PCA to Real Input Pa-
rameters

We applied PCA to 648, 42,497 and 492,075 input

parameter sets to examine the stability of the cumu-

lative proportion. We modified the above parameter

values so that the average of the input parameters is

set to 0 and the variance is 1 to standardize the input
parameters.

Fig.1 shows the cumulative proportion for each el-
ement of the input parameter sets. The vertical axis
shows the cumulative proportion described in Fig.1.
As a result, we find that the cumulative proportions
of each parameter set are near to each other regard-
less of the number of input parameter sets. Thus the
results obtained by PCA are stable and reliable.

Fig.1 shows that the first through fifth principal
components represent 95% of the original input pa-
rameters. Therefore input parameter sets on twelve
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[ name 1 explanation | name 1 explanation
dlt_t normalized time step of numerical simulation nex1 distribution function of electron momentum
C Tight speed normalized by typical electron speed nex2 distribution function of electron momentum
nix1 distribution function of 1on momentum TeO temperature of electrons

nix2 distribution function of ion momentum avrg_dns_e numerical factor of number density of electrons
Ti0 temperature of ions E0 intensity of Taser
avrg_dns_i numerical factor of number density of ions rLwx Taser wavelength in X-axis direction

Table 1: parameter

dimensions can be transformed into five dimensions
keeping the original information from the reduction.

4 Parameters Classification by
LVQ
41 ILVQ

Learning Vector Quantization (LVQ) is an arbitrary
statistical algorithm with supervised learning [4]. We

assume that a number of “codebook vectors” are
placed in an input vector space to approximate var-

ious domains of input vectors by their quantized
values. Values for the codebook vectors that ap-
proximately minimize the misclassification errors in
the nearest-neighbor classification can be found as
asymptotic values in the learning process. This learn-
ing process is repeated a specified number of times for
training. Repeating the above learning process, the

Bayes discriminate boundary can be decided. In this

paper, we adopt OLVQ1 for the classification of input

parameters.

4.2 Classification Experiments

i From the experiments in section 3.2, we apply LVQ

to input parameters reduced by PCA in this experi-

ment. The data sets we use here provide three kinds

of simulations. We call the three simulations A, B

and C, respectively.

We compared the recognition accuracy of the fol-
lowing three experiments which are performed vary-
ing the size of the training data, codebook vector
and the training steps. We chose about 40,000 sets
from all the data sets, where some data sets are used
for the training data and the others are used for the
recognition test.

Experiment 1 LVQ is applied to 2,000, 3,000 and
6,000 data sets, respectively. Each data set con-
sists of the same number of input parameter sets
for the three simulation types. Namely, 6,000
data sets are divided into 2,000 data sets by the
simulation type. The number of codebook vec-
tors is set to 11—0 of each data set and the number
of training steps is set to forty times the number
of codebook vectors.

Experiment 2 LVQ is applied to the same 6,000
data sets as experiment 1, but the number of
codebook vectors is 100, 200, 600, 800 and 1,200,
respectively. The number of training steps is set
to forty times the number of codebook vectors.

0190

Experiment 3 LVQ is applied to the same 6,000
data sets as experiment 1, but the number of
training steps is 24,000, 48,000 and 80,000, re-

spectively. The number of codebook vectors is
set to 1,200.

4.3 Results of Classification
We analyzed the recognition accuracy of each exper-
iment explained in section 4.2 using the test data.
The results of experiment 1 is the low recognition ac-
curacy of simulation C (2,000 data sets) and B (3,000
data sets). On the other hand, recognition accuracy
of all the simulations is more than 95% for the 6,000
data sets.

Fig.2 shows the results of experiment 2. The verti-
cal axis shows the recognition accuracy, and the hor-
izontal axis shows the number of codebook vectors.

the recognition accuracy(%)

100 200 600 800

the number of codebook vectors

1200

Figure 2: the recognition accuracy of experiment 2
In Fig.2, the recognition accuracy of simulation C
is about 10% when the number of codebook vectors
is set to 100. Fig.2 shows rapid increase in the recog-
nition accuracy of simulation C of more than 70%
when the number of codebook vectors is set to 200.
The more codebook vectors there are, the higher
the recognition accuracy is. The recognition accuracy
of simulation C is assumed to be highly dependent on
the number of the codebook vectors. The recognition
accuracy of all the simulations is more than 98% when
the number of the codebook vectors is set to 1,200.
Fig.3 shows the results of experiment 3. The verti-
cal axis shows the recognition accuracy, and the hor-
izontal axis shows the number of training steps.
Fig.3 shows the low recognition accuracy of simu-
lation C when the number of training steps is set to
24,000. The recognition accuracy is almost the same
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Figure 3: the recognition accuracy of experiment 3

when the number of training steps is set to 48,000
and 80,000.

The training converges when the number of code-
book vectors and training steps are set to 1,200 and
48,000, respectively. As a result, it turned out that
the recognition accuracy is the highest when LVQ is
applied to 6,000 data sets which contain 1,200 sets of
code vectors with 48,000 steps in training.

The recognition accuracy of simulation B and C
are lower than simulation A. The result of the clas-
sification is visualized using a Sammon Mapping [5]
to examine the distribution of input parameter cate-
gories for simulation A, B and C. The Sammon Map-
ping is a method which generates a mapping from
an n-dimensional data space to the two-dimensional
plane. Fig.4 shows the main part of the visualiza-
tion result of LVQ classification applied to 6,000 data

sets which contains 600 sets of codebook vectors with
48,000 training steps. The reason we use 600 code-

book vectors is to simplify the presentation of Fig.4.

Figure 4: the codebook vectors

In Fig.4, the parameter category of simulation A

is distant from the other simulations. On the other
hand, the parameter category of simulation B is close
to simulation C.

Therefore it is assumed that the reason the recog-
nition accuracy of simulation B and C are lower than

simulation A in all the experiments is that some pa-

rameter sets can not be classified near the border
between parameter categories of simulation B and C.

5 Conclusion

The purpose of this research is to implement an input
parameter agent with an automatic learning capabil-
ity for an autonomous management system for large-
scale simulations at JAERI KRE APRC. In this pa-
per, we proposed a two-step method; we applied PCA
to transform them into smaller dimensions, and then
applied LVQ to the reduced ones.

We applied PCA to the twelve main parameters out
of about two hundred fifty. As a result, five principal
components obtained using PCA represent more than
95% of the original data. Therefore input parameter

sets on twelve dimensions can be transformed into
five dimensions. ) )
Input data obtained using PCA was classified into

three simulation types using LVQ. The recognition
accuracy of all the simulations was more than 98%
when LVQ was applied to 6,000 data sets which con-
tained 1,200 sets of codebook vectors with 48,000
training epochs. It turned out that the input pa-
rameter sets could be classified into three kinds of
simulation types correctly by LVQ.

We will apply this method to input parameters of
different simulation types from the three simulations
types to examine whether they can be classified cor-
rectly. Moreover, adding an automatic generation ca-
pability using knowledge obtained using LVQ in the
input parameter customization agent, we will be able
to complete the implementation of the agent.
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