#HEEAN HRARES
IPSJ SIG Technical Report

iR

2003 —MPS—45
200376724

NaraView # W= BGRET 27 5 LI BT o7t
o FET. (L

sasakura@momo.it.okayama-u.ac.jp

RILLKR%: HARRHEBTZR

FETELRRET 0y T LB SHHOEREL RERNIFHLa Y NAF D 0RFELY
AF I NaraView 7 17 5 LG 2 -2 AOTREALT 2, SHGRET 27 5 hcB0
TRMEND Ay E—VF, B, Avbe—V2EXTIREI 0TS AL, Aok —VORE
VRNVDEDDEREF->TEY, Tho27/ay I LS o —0F/OHc 22 LT

BRICARLTES,

An Application of NaraView to Reasonings
for Distributed Logic Programs

Mariko Sasakura and Susumu Yamasaki
Department of Intelligence Computing and Systems

Graduate School of Natural Science and Technology, Okayama University

Abstract

Visualization has played a significant role in understanding the behavior of distributed pro-
grams. We propose a visualization that shows message exchanges in distributed logic pro-
grams using the Program Structure View in NaraView: The behavior of distributed logic
programs is easily visualized using the Program Structure View since the messages have
three parametric factors: time, derivation, and hierarchical level.

1 Introduction

Software visualization can clarify the characteris-
tics and behavior of programs. This clarification
is especially useful for parallel and distributed pro-
grams {1]. NaraView [6] is a software visualization
tool that provides two visualizations for paralleliz-
ing a program: the Program Structure View and
the Data Dependence View. The Program Struc-
ture View (PSV) visualizes the structure of a pro-
gram. The Data Dependence View displays the
data dependences in a loop.

The PSV is designed in three-dimensions using
the parametric factors of a program. Fach dimen-
sion corresponds to one of three factors: time se-
quence, parallelism and loop nesting. In this paper,
we make use of the PSV such that it may visual-
ize the behavior of distributed programs by time
sequence, parallelism and hierarchical structures in
the programs.

We apply this elaborate system to deal with
the visualization of reasonings for distributed pro-

gram environments. Distributed programs consist

 of logic programs which are different from each

other and executed on different processors.
A three-dimensional approach to the visualiza-
tion is motivated as an application of NaraView:

(1) The first dimension describes sequences of
configurations, as time passes and processes
change.

(2) The second dimension is concerned with the
(spatial or logical) extension of distributed
programs.

(3) The third dimension is required for communi-
cation histories to form a configuration of com-
munications in distributed programs for some
duration.

As a distributed program environment, a dis-
tributed logic program is examined as follows.

As discussed in Shepherdson {7], the “negation
as failure” rule is well established:

o))

If a proposition A cannot be proved by
a theory P (P I/ A), then the negated
predicate not A may be inferable.

It can work in relation to 3-valued logic models. It
is applicable to deductive databases to infer not A
by applying finite searches of the predicate A. The
acquisition of the negated predicate not A is gener-
ally applicable to abduction (as in Kakas et al. [3]
), diagnosis, causal theory and so on.

Assuming distributed environments of programs
and/or databases, negation as failure is revised to
incorporate the idea that negation as failure is per-
formed at each site of the program or the database.
In addition, the communications for the negation
as failure applications are clearly visualized.

This idea motivates the formulation of a dis-
tributed logic program with negation as failure,
which is extended from the distributed program
without negation (Ramanujam [5]), and the study
of the visualization for negation as failure in dis-
tributed program environments. A distributed
logic program is a network of logic programs, where
(1) the reasoning for each logic program is defined,
and (2) the negation as failure evoked by each pro-
gram is formulated throughout the network.

Given the above background, we present a three-
dimensional visualization of reasonings for a dis-
tributed logic program, which is a network of
logic programs. The communication is a reasoning
caused by negation as failure through the network
where each logic program reasons using the nega-
tion as failure through the network. It consists of
displays for:

(i) a sequence of configurations,

(ii) a network of logic programs,

(iii) a configuration of negation as failure through
the network for some duration.

2 Reasonings in a distributed
logic program

2.1 A distributed logic program

We deal with a network of logic programs which
contain negation as failure, where negation as fail-
ure through the network is formulated and the com-
munications to implement it are visualized. A dis-
tributed general logic program (DGLP, for short)
is a tuple

<P,...,P,>(n>1),

where P; is the general logic program.
A general logic program is a set of clauses of

the form Ag < A1,..., Am, not Apti, ..., not A,
(n > m > 0), where Ag, A, ..., A are atoms
(positive literals) and not Apm41, ..., not A, are

negations of atoms (negative literals). Ap is the
head of the clause and A;,...,An, not Apya, ...,
not A, is its body. A literal is a positive literal or
a negative literal.

The goal is an expression of the form <
Ly,...,L,, where Ly, ..., L,, where Ly, ..., L,
are literals. The empty clause containing no head
nor body is denoted by O.

The reasonings by SLD resolution and negation
as failure for this goal are briefly given below. For
the basic treatments, see Lloyd [4].

(1) A goal <——A10,A.., Ai_le,Llo,..., Lké?,
Aip16, ..., Anb,not Apiib, ..., not A0
is derived from a goal
— Ay,...,Am,not Apya,. .. not A, and a
- (program) clause A ¢ Li,...,L;, where §
is the most general unifier of the atoms A;
(1 €4 < m)and A If a goal reaches O
by SLD resolution and negation as failure
(recursively defined as below), we say that the
goal succeeds. If a goal cannot reach O by
means of finite applications of SLD resolution
and negation as failure, we say that the goal
(finitely) fails. In this paper, we deal with
only finite failure.

(2) Negation as failure is a rule that states that: A
goal + not A succeeds if a goal + A fails, and
a goal ¢ not A fails if a goal + A succeeds for
a ground atom A (that is, an atom contain-
ing no variables). We have a refined negation
as failure, originally presented in Eshghi and
Kowalski [2}:

(i) A goal + not A succeeds if a goal + A
fails with the atom A in memory,

(i) A goal + not A fails if a goal + A suc-
ceeds,

where A is a ground atom, sometimes called
an abducible.

We take a rule of “negation as failure through a
network” as follows.

(i) A goal + not A succeeds if a goal < A fails
for each general logic program with the ground
atom A in memory.

(i) A goal + not A fails if a goal « A succeeds.

EXAMPLE 1 Assume a DGLP P =< P, P2 >
such that

P
Ps

{p + not g},
{g &},

where p,q and r are atoms (in propositional logic).
Because a goal + g fails for both the programs P;
and P, we can have a successful derivation for a
goal ¢ pin Py, which requires the failing derivation
for a goal « ¢ in both P, and P.

2.2 A communication environment

A communication environment for distributed pro-
grams consists of two parts: servers which manage
message exchanges, and logic programs. A server
can connect to the PSV which visualizes the mes-
sage exchanges in the server. An overview of the
environment is as follows.

Each logic program P; (1 < i < n), which is
a part of a distributed logic program is imple-
mented as an independent program. We call it
an Independent Logic Program (ILP, for short).

A server Session manages message exchanges
between ILPs. A Session knows which ILP
participates in this Session and controls mes-
sages to/from other ILPs. A Session realizes a
DGLP.

e There may be more than one ILP and Session
in an environment. An ILP can participate in
more than one Session. A Session can consist
of more than one ILP.

e A process Reasoning is a sequence of deriva-
tions that begin with a given goal.

e In a Session, more than one Reasoning can be
executed simultaneously.

e A Session can visualize a state of Reasonings
using the PSV with histories of messages.

Messages for distributed logic programs are de-
fined as Table 1.

2.3 OQutline of visualization

A history of message exchanges are visualized for
a Session using the PSV. The PSV is a three-
dimensional visualization in which each axis has a
different meaning. The x-axis is the time when a
message was sent. The y-axis is the derivation to
which a message was related. The z-axis denotes
the hierarchical structure of messages.

In a Session, more than one Reasoning can be
executed simultaneously. The PSV visualizes their
message exchanges in a figure. We extend the PSV
to highlight a selected Reasoning by coloring the his-
tory of messages related to it. ‘

The advantages of the visualization are:

o We can show the state of a Session.

e We can know how derivation calls are evoked
in a Reasoning.

e If there is a derivation that does not send an
end message, we'can find it in a visualized fig-
ure. : ! : :

3 Implementation for dis-
tributed logic programs

The system we have implemented consists of two
parts: a Session and an ILP. A Session controls and
records messages, and knows which ILPs it partic-
ipates in when a Reasoning is performed. An ILP
has a logic program and it can perform derivations.

A message is represented as a colored cube in the
PSV. Its coordinates are defined as: the time, the
derivation which sends/receives the message, and
the hierarchical level. The three parametric factors
of messages are given by a Session.

Time: A Session has a global clock. The time
is set by the clock. The time of a message is
determined when the message is sent/received
by the Session.

Derivation: A derivation is the derivation
to/from which the message is sent. To give
the feeling of a spatial extension of a network,
derivations that are executed on the same it
ILP are placed in the same neighborhood.

Hierarchical level: A hierarchical level is calcu-
lated by the derivation call tree. The hierar-
chical level of a message is the depth of the
corresponding derivation in the derivation call
tree.

We connect messages with lines according to
the semantic configuration of messages. Lines are
drawn by applying the following rules:

o In the case of an SFAIL message, connect it to
all FAIL messages caused by the SFAIL mes-
sage.

e In the case of an FAILR message, connect it
to an SFAILR message that pairs off with the
SFAIL message which called the FAILR mes-
sage.

Table 1: Messages

Message Sender - Receiver Comments

SFAIL ILP Session
derivation.

SFAILR Session ILP
derivation.

FAIL ILP Session

FAILR Session ILP

The start of a network failing derivation. It is sent by a succeeding
The end of a network failing derivation. It is received by a succeeding

The start of a failing derivation.
The end of a failing derivation.

The end of
The start of reasoning 1.
reasoning 1.

\

\

Thestart of
reasoning 2.

Reasoning 2 s w
correspond to these n

Figure 1: Communications in two Reasonings with
five ILPs.

o In other cases, connect a message to the next
message which has the successive time value
on the same derivation and hierarchical level.

In the visualization, we add extra cubes that rep-
resent the start and the end of a Reasoning. The
cubes are drawn using a different color than for
cubes that represent messages.

EXAMPLE 2 Figure 1 shows the status of a
Session with. two Reasonings. The Reasonings
have been performed on five ILPs:P, = {A «
not B}, P, = {B - C},P; = {B ¢ not D},Py =
{D « not E},Ps = {E + O} with a given goal
«— A to P, and a given goal < B to P;. The for-
mer Reasoning finished but the latter has not been
finished. The latter Reasoning is depicted in the
figure as light gray cubes. The Reasoning is waiting
for messages corresponding to the indicated cubes.
We can know which derivation is the bottleneck if
a Reasoning takes a long time.

4 Concluding Remarks

We propose a three-dimensional visualization of
communications in distributed logic programs with

the Program Structure View which is a visualiza-
tions in NaraView. The PSV visualizes character-
istics of programs on three axes: time, parallelism,
and hierarchical structure of programs. In a visual-
ization of reasonings for distributed logic programs,
we use derivations as parallelism and the structure
of messages caused by recursive calls as the hierar-
chical structure.

Time and parallelism (derivations, in our case)
are common parametric factors to visualize the be-
havior of parallel/distributed programs. We add
a hierarchical structure which is included in the
programs as the third axis so that we can get a
visualization with a semantic configuration of the
programs.

References

[1] P.Eades and K.Chang(eds.). Software Visuali-
sation. World Scientific, 1996.

[2] K.Eshghi, and R.A Kowalski. Abduction com-
pared with negation by failure, Proc. of 6th
ICLP, 234-255, 1989.

[3] A.C.Kakas, R.A.Kowalski and F.Toni. Abduc-
tive logic programming, - J. of Logic and Com-
putation, 2, 719-770, 1992.

[4] J.W .Lloyd. Foundations of Logic Programming,
2nd, Extended Edition, Springer — Verlag, 1993.

[5] R.Ramanujam. Semantics of distributed def-
inite clause programs, Theoretical Computer
Science, 68, 203-220, 1989.

[6] M.Sasakura, K.Joe, Y.Kunieda and K.Araki.
NaraView: an interactive 3D visualization sys-
tem for parallelization of programs, Interna-
tional Journal of Parallel Programming, 27, 2,
111-129, 1999. ‘

[7] J.C.Shepherdson. Negation in Logic Program-
ming, J.Minker (ed.), Foundations of Deductive
Databases and Logic Programming, 19-88, 1987.

