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概要

本論文では, まず, 帰納的実数値関数の帰納推論の新しいモデルとして, 論駁推論
および信頼推論を導入し, 論駁推論の成功基準 RealRefExと信頼推論の成功基準
RealRelExについて考察する. そして, この二つの基準と帰納的実数値関数の既存の
推論基準である極限同定の成功基準RealEx, 有限推論の成功基準RealFin, および
枚挙推論の成功基準RealNum! を比較し, 相互関係を明らかにする.
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Abstract

In this paper, we introduce new models of refutably and reliably inductive inference
of recursive real-valued functions, and consider the new criteria RealRefEx for
refutable inference and RealRelEx for reliable inference. Then, we compare these
two criteria with RealEx for identification in the limit, RealFin for learning finitely
and RealNum! for learning by enumeration that have been already introduced in
the previous works, and investigate their interaction.

1 Introduction

Inductive inference gives us a theoretical
model of concept learning from examples. In
inductive inference, whether or not a learn-
ing process is successful is determined by a se-
quence of hypotheses as outputs under several
criteria.

Historically, many researchers have devel-
oped inductive inference of recursive functions,
by introducing the criteria Ex [6], Fin [6] and
Num! [3, 4]. They correspond to identification
in the limit, learning finitely and learning by
enumeration, respectively.

Mukouchi and Arikawa [13] have first formu-
lated and developed refutably inductive infer-

ence of formal languages and formal systems.
In their framework, a learning machine will dis-
cover a hypothesis which produces examples if
it is in a hypothesis space, otherwise it will re-
fute the whole hypothesis space and stop.

Minicozzi [12] and L. and M. Blum [5] have
introduced the reliability requiring that when-
ever a learning machine converges to some hy-
pothesis from given data of a recursive func-
tion, it always identifies the function. The reli-
ability realizes the requirement that a reliable
scientist never fails to signal the inaccuracy of a
previous false hypothesis. We denote the crite-
rion for learning reliably in the limit by RelEx.

Recently, Jain et al. [10] have deeply studied
refutably inductive inference of recursive func-

1北九州市立大学/The University of Kitakyushu
2九州工業大学/Kyushu Institute of Technology
3広島市立大学/Hiroshima City University
4九州大学/Kyushu University

1

研究会Temp
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp 
2003－MPS－46　　(1)

研究会Temp 
2003／9／18

研究会Temp 
－1－



tions. They have introduced the new criterion
RefEx for learning refutably and investigated
the relationship between RefEx and the criteria
Ex, Num! and RelEx.

On the other hand, a recursive real-valued
function is one of the formulations for com-
putable real numbers. Inductive inference of
recursive real-valued functions has been first
investigated by Hirowatari and Arikawa [7, 8]
and developed by their co-authors [1, 2, 9]. In
their works, the criteria RealEx, RealFin

and RealNum! have been introduced as the
extensions of Ex, Fin and Num!, respectively,
and their interaction has been investigated.

Hence, in this paper, we investigate refutably
and reliably inductive inference of recursive
real-valued functions. First, we introduce the
new criteria RealRefEx for learning refutably
and RealRelEx for learning reliably of recur-
sive real-valued functions. Then, we obtain the
interaction of our criteria described in the fol-
lowing figure.
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2 Inductive Inference of Recursive

Real-Valued Functions

In this section, first we prepare some notions
necessary to the later discussion. We omit the
formal definition of recursive real-valued func-
tions. Refer to [2, 8, 9] in more detail. We
denote the sets of all natural numbers, positive
natural numbers, rational numbers, real num-
bers and recursive real-valued functions by N ,
N+, Q, R and RRVF , respectively.

By ϕj we denote the partial recursive func-
tion from N to N computed by a program j.
By P we denote the set {ϕ0, ϕ1, ϕ2, · · ·} of all

partial recursive functions from N to N and by
R the set of all recursive functions.

Definition 1 Let S0 ⊆ N be the domain of
ϕj ∈ P. Then, a function hj : S → R (S ⊆ R)
is called the stair function of ϕj if hj satisfies
the following conditions:

1. S =
⋃

i∈S0
(i − 1

2 , i + 1
2),

2. hj(x) = ϕj(i) for any x ∈ (i− 1
2 , i+ 1

2) and
i ∈ S0.

For S ⊆ P, we call a stair function of a function
in S a stair function in S simply.

Definition 2 For ϕj ∈ R, the following func-
tion hj : [0,∞) → R is called the line function
of ϕj .

hj(x) = (ϕj(i + 1) − ϕj(i))x
+ ϕj(i)(i + 1) − ϕj(i + 1)i

for any x ∈ [i, i + 1] and i ∈ N.

For T ⊆ R, we call a line function of a function
in T a line function in T simply.

In order to consider recursive real-valued
functions, we deal with the approximation of a
real number x, instead of the exact value of x,
and capture it as a pair 〈p, α〉 of rational num-
bers such that p is an approximate value of the
number x and α is its positive error bound, i.e.,
x ∈ [p − α, p + α]. We call such a pair 〈p, α〉 a
datum of x.

An example of a function h : S → R (S ⊆ R)
is a pair 〈〈p, α〉, 〈q, β〉〉 satisfying that there ex-
ists a real number x ∈ S such that 〈p, α〉 and
〈q, β〉 are data of x and h(x), respectively.

A presentation of a function h : S → R

(S ⊆ R) is an infinite sequence σ = w1, w2, . . .

of examples of h in which, for any real number
x in the domain of h and any ζ > 0, there exists
an example wk = 〈〈pk, αk〉, 〈qk, βk〉〉 such that
x ∈ [pk −αk, pk + αk], h(x) ∈ [qk −βk, qk + βk],
αk ≤ ζ and βk ≤ ζ. By σ[n] we denote the
initial segment of n examples in σ.

An inductive inference machine (IIM) is a
procedure that requests inputs from time to
time and produces from time to time algo-
rithms that compute recursive real-valued func-
tions. These algorithms produced by an IIM
while receiving examples are called conjectures.
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For an IIM M and a finite sequence σ[n] =
〈w1, w2, · · · , wn〉, by M(σ[n]) we denote the
last conjecture of M after requesting examples
w1, w2, · · · , wn as inputs.

Let σ be a presentation for some function and
{M(σ[n])}n≥1 the infinite sequence of conjec-
tures produced by an IIM M. The sequence
{M(σ[n])}n≥1 converges to an algorithm Ah

if there exists a number n0 ∈ N such that
M(σ[m]) equals Ah for any m ≥ n0.

The criteria RealEx, RealFin and
RealNum! for inductive inference of recur-
sive real-valued functions (see [8, 9] for formal
definitions) correspond to the standard criteria
Ex, Fin and Num! for inductive inference of
recursive functions [3, 4, 6, 10, 11]. Now, we in-
troduce two criteria RealRefEx for refutably
inductive inference of recursive real-valued
functions corresponding to RefEx [10], and
RealRelEx for reliably inductive inference of
recursive real-valued functions corresponding
to RelEx [5, 10, 12].

Let h be a recursive real-valued function, σ

a presentation of h, and T a class of recursive
real-valued functions. Also let RealEx(M) be
the set of all recursive real-valued functions in-
ferred by an IIM M in the limit, and ⊥ the
refutation symbol .

Definition 3 We say that an IIM M refutably
infers T in the limit if M satisfies the following
conditions:

1. T ⊆ RealEx(M).
2. If h ∈ RealEx(M), then M(σ[n]) �= ⊥

for any σ and n ∈ N .
3. If h ∈ RRVF \ RealEx(M), then there

exists an n ∈ N such that M(σ[m]) �= ⊥
for any σ and m < n, and M(σ[m]) = ⊥
for any σ and m ≥ n.

Definition 4 We say that an IIM M reliably
infers T in the limit if M satisfies the following
conditions:

1. T ⊆ RealEx(M).
2. If h ∈ RRVF \ RealEx(M), then a se-

quence {M(σ[n])}n≥1 does not converge to
an algorithm for any σ.

By RealRefEx (resp., RealRelEx) we de-
note the collection of all classes of recursive
real-valued functions that are refutably (resp.,
reliably) inferable in the limit.

3 Comparison of Criteria

In this section, we compare the new criteria
RealRefEx and RealRelEx with the previ-
ous criteria. Note here that the following state-
ments hold by our previous works [8].

1. RealFin ⊆� RealEx.
2. RealFin ∩ RealNum! �= ∅.
3. RealNum! \ RealEx �= ∅.

Theorem 5 The following statements hold.

1. RealRefEx ⊆� RealRelEx ⊆� RealEx.
2. RealRefEx∩RealFin∩RealNum! �= ∅.
3. RealFin \ (RealRelEx∪RealNum!) �=

∅.
4. RealRelEx\(RealRefEx∪RealFin∪

RealNum!) �= ∅.

Theorem 6 For Ii ∈ {RealRefEx,RealFin,

RealNum!} (i = 1, 2, 3) such that Ii �= Ij

(i �= j), the following statements hold.

1. (I1 ∩ I2) \ I3 �= ∅.
2. (RealRelEx ∩ I1) \ (I2 ∪ I3) �= ∅.

In the reminder of this section, we give sev-
eral examples, instead of the proofs of the
above theorems.

For ϕ ∈ R, ϕ−1(0) denotes the set {n ∈ N |
ϕ(n) = 0}. Then, R{0,1}, Rm

{0,1} and R∗
{0,1} are

defined as follows.

R{0,1} = {ϕ : N → {0, 1} | ϕ ∈ R},
Rm

{0,1} = {ϕ ∈ R{0,1} | #ϕ−1(0) ≤ m},
R∗

{0,1} = ∪m∈NRm
{0,1}.

Also let T m
{0,1} and T ∗

{0,1} be the sets of all line
functions in Rm

{0,1} and in R∗
{0,1}, respectively.

Then:

1. T 0
{0,1} ∈ RealRefEx ∩ RealFin ∩

RealNum!.
2. T m

{0,1} ∈ (RealRefEx ∩ RealNum!) \
RealFin for m ∈ N+.
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3. T ∗
{0,1} ∈ (RealRelEx ∩ RealNum!) \

(RealRefEx ∪RealFin).

Let U be the set of all recursive functions f

from N to N such that ϕf(0) = f and TU the
set of all stair functions in U . Then:

T U ∈ RealFin \ (RealRelEx∪RealNum!).

For m ∈ N+ and ϕj ∈ Rm
{0,1} \ Rm−1

{0,1}, let
ϕm,j be the following function:

ϕm,j(n) =

{
m if n = 0,

ϕj(n − 1) otherwise.

Let S ⊆ N and S◦T ∗
{0,1} the set of all line func-

tions of ϕm,j for m ∈ S and ϕj ∈ Rm
{0,1}\R

m−1
{0,1}

(N ◦ T ∗
{0,1} if S = N). Assume that S is not

recursively enumerable. Also let CS (resp., CQ)
be the set of all constant functions cs : [0, 1] →
S (resp., cq : [0, 1] → Q) such that cs(x) = s

for s ∈ S (resp., cq(x) = q for q ∈ Q). Then:

1. S ◦ T ∗
{0,1} ∈ (RealRelEx ∩ RealFin) \

(RealRefEx ∪RealNum!).
2. N ◦ T ∗

{0,1} ∈ (RealFin ∩ RealNum!) \
RealRefEx.

3. CS ∈ (RealRefEx ∩ RealFin) \
RealNum!.

4. CS ∪ T m
{0,1} ∈ RealRefEx \ (RealFin ∪

RealNum!) for m ∈ N+.
5. CQ ∪ T U ∈ RealEx \ (RealRelEx ∪

RealFin ∪ RealNum!).

Finally, for any subset F ⊆ N , let ϕF be the
following function:

ϕF (n) =

{
0 if n ∈ F,

1 otherwise.

Let S ⊆� N be an infinite subset that is not re-
cursively enumerable and Φ∗

S the set of all line
functions of ϕF such that F is a finite subset
of S. Then:

Φ∗
S ∈ RealRelEx \ (RealRefEx ∪

RealFin ∪ RealNum!).

4 Conclusion

In this paper, we have introduced the crite-
ria RealRefEx and RealRelEx for refutably

and reliably inductive inference of recursive
real-valued functions, and compared them with
RealEx, RealFin and RealNum!, as de-
scribed in the figure in the last of Section 1.
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