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あらまし 本研究において，線形言語のある部分言語族に対する所属性質問を用いた多項式時間 PAC 学習が，

いくつかの条件のもとで可能であることを示す．学習対象となる言語族は，正則言語族と even-linear 言語族を

真に含む．この学習対象の言語族に対して，以下のような 2 つの設定を考える．第一の設定は，学習対象を表

す文法の生成規則の出現率のうち，もっとも小さな値とその文法のサイズが既知である場合である．第二の設

定は，学習者は，ある小さな確率で終了しないことが許される場合である．どちらの設定においても，学習対

象となる言語族は，所属性質問と代表部分集合から多項式時間厳密学習を行うアルゴリズムを用いて，効率的

に PAC 学習可能である．
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Abstract We show polynomial time PAC learnability of a sub-class of linear languages with membership

queries in some special settings. Where the new sub-class of linear languages includes the class of regular

languages and the class of even linear languages. For this sub-class, we consider two learning settings as

follows. The first case is when the learner knows both of the minimum probability of appearing a specific

rule in an example and the size of a grammar which generates the target language. The second case is

when the learner does not have to terminate with a small probability. In both cases, the sub-class of linear

languages is learnable by supervising algorithms of an exact learning algorithm via membership queries

and a set of representative samples.

1 Introduction

In this paper, we show that a sub-class of linear
languages is polynomial time learnable via mem-
bership queries and examples in two special set-
tings. The sub-class of linear languages is newly de-
fined by us such that it includes the class of regu-
lar languages and the class of even linear languages
which is polynomial time learnable via queries and
counterexamples[4].

In both settings, the learnability is shown by a
front-end algorithm which supervises an exact learn-
ing algorithm with membership queries and a set of
representative samples.

2 Preliminaries

A context-free grammar (CFG for short) is a 4-tuple
G = (N,Σ , P, S). Let σ be the word whose length
is 0. Assume that all CFGs are σ-free. In this pa-
per, γAγ′ ∗⇒

G
γβγ′ denotes the derivation from γAγ′

to γβγ′ in G. The language generated from γ by G
is denoted by LG(γ) = {w ∈ Σ∗ | γ

∗⇒
G

w}. The lan-

guage generated by G is denoted by L(G) = LG(S).
A nonterminal A ∈ N is said to be reachable if
S

∗⇒
G

wAβ for some w ∈ Σ∗, β ∈ N∗, and a non-

terminal D ∈ N is said to be live if LG(D) �= ∅. For
two CFGs G1 and G2, L(G1)∆L(G2) denotes the set
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{w ∈ Σ∗ | w ∈ (L(G1)−L(G2))∪ (L(G2)−L(G1))}.
A CFG G is a linear grammar iff every rule in G is
one of the form A → aBb, A → aB, A → Bb or
A → a for a, b ∈ Σ and A, B ∈ N . Any other defini-
tions about formal language theories are referred to
[2].

Assuming a probability distribution D over Σ ∗ and
let Pr(w) be the probability for w ∈ Σ∗, a hypothe-
sis Lh is probably approximately correct[6] (PAC for
short) iff

Pr[P (Lh∆Lt) ≤ ε] ≥ 1 − δ

holds where P (Lh∆Lt) is the probability of difference
between Lh and Lt. Any other definitions about PAC
learning are referred to [3].

A membership query MEMBER(w) for w ∈ Σ∗

on a linear language Lt replies with 1 if w ∈ Lt or 0
otherwise.

In this paper, we assume that the learner can use
membership queries and examples.

3 Mode selective linear lan-

guages

We define a new sub-class of linear languages to show
the learnability via membership queries and exam-
ples.

3.1 Definitions and properties

A linear grammar G = (N,Σ , P, S) which satisfies
the following is called a mode selective linear gram-
mar:

If a rule A → aBc is in P for A, B ∈ N and a, c ∈
Σ , then none of A → aCc, A → aC and A → Cc are
in P for any C ∈ N such that C �= B.

If a rule A → aB is in P for A, B ∈ N and a ∈ Σ ,
then

1. neither A → aCc nor A → aC is in P for any
c ∈ Σ and any C ∈ N such that C �= B, and

2. there is no rule in P such as A → Db for any
D ∈ N and any b ∈ Σ .

If a rule A → Ba is in P for A, B ∈ N and a ∈ Σ ,
then

1. neither A → cCa nor A → Ca is in P for any
c ∈ Σ and any C ∈ N such that C �= B, and

2. there is no rule in P such as A → bD for any
D ∈ N and any b ∈ Σ .

In words, when the derivation for w ∈ Σ ∗ is pro-
ceeded to S

∗⇒
G

uAv where u, v, z ∈ Σ ∗, a, b ∈ Σ and

uazbv = w, we can select a rule for the next deriva-
tion in deterministic with a and b.

Throughout this paper, we assume that the tar-
get language is a mode selective linear language de-
noted by Lt and Gt denotes some mode selective lin-
ear grammar such that L(Gt) = Lt.

Theorem 1 The class of mode selective linear lan-
guages is incomparable to the class of simple deter-
ministic languages and contains the class of regular
languages and the class of even-linear languages. �

Theorem 2 Let G = (N,Σ , P, S) be a mode se-
lective linear grammar and w ∈ L(G). Consider a
derivation such that

S
∗⇒
G

w1Aw2

where w1aubw2 = w for w1, w2 ∈ Σ∗, a, b ∈ Σ and
u ∈ Σ+. Then, there is exactly one rule in P whose
left-hand side is A and which can be used in a deriva-
tion of A

∗⇒
G

aub. �

From this theorem, aub ∈ L(A) iff w1aubw2 ∈ Lt.
That is, we can observe behavior of a nonterminal by
membership queries for Lt.

3.2 Representative samples

We define a set of representative samples of a linear
language L for learning algorithms shown in later.

Definition 3 Let G = (N,Σ , P, S) be a linear gram-
mar such that every A ∈ N is reachable and live. Let
Q be a finite subset of L(G). Then Q is a set of repre-
sentative samples (RS for short) of G iff the following
holds.

• For any A → aBc in P , there exists a word
w ∈ Q such that S

∗⇒
G

xAy⇒
G

xaBcy
∗⇒
G

w for

some x, y ∈ Σ∗. �

From this definition, for any linear grammar G =
(N,Σ , P, S), there exists a set of RS Q such that
|Q| ≤ |P |.
Definition 4 For a linear language L, a finite set
Q ⊆ L is a set of RS iff there exists a linear grammar
G = (N,Σ , P, S) such that L(G) = L and Q is a set
of RS of G. �

We can find an RS of a linear grammar G =
(N,Σ , P, S) in time of a polynomial of |N |, |Σ |.
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4 PAC learnability

We consider that how many examples are needed to
construct a set of RS. For every rule A → β where
β ∈ (Nt ∪ Σ )+ in Pt, let

Z(A → β) = {w ∈ Σ∗ | St
∗⇒

Gt

α1Aα2 ⇒
Gt

α1βα2
∗⇒

Gt

w}

for α1, α2 ∈ (Nt ∪Σ )∗. Then, a probability Pr(A →
β) is defined as follows;

Pr(A → β) =
∑

u∈Z(A→β)

Pr(u).

It is to say that Pr(A → β) is an appearing proba-
bility of A → β when a sample word is given. Now,
let d = min{Pr(A → β) | A → β in Pt}, then the
probability that the rule A → β does not appear in
derivations of m samples is bounded by (1 − d)m.
There are |Pt| rules, thus a set of m samples which
satisfies

|Pt|(1 − d)m < δ

is a set of RS with a probability at least 1 − δ. Let
m > − 1

d log( δ
|Pt|), then

|Pt|(1 − d)m ≤ |Pt|e−dm

< δ.

On the other hand, it has been proved that equiv-
alence checking between a hypothesis and the tar-
get language can be replaced by checking polyno-
mial examples on the PAC criterion[1]. Now, let
ni ≥ 1

ε

(
log( 1

δ ) + (log 2)(i + 1)
)

for the learner’s i-th
guess, then the hypothesis which is consistent to ni

examples satisfies the PAC criterion.
Thus, if there exists an exact learning algorithm

via membership queries and a set of RS then the fol-
lowing two learning algorithm can be thought. Let
Aq be such an exact query learning algorithm.

Algorithm 1
INPUT : δ, d and |Pt|;
OUTPUT: a hypothesis Gh;
begin

take m examples;
(let M be the set of example words)
Q := Q ∪ {w ∈ M | w ∈ Lt};
execute Aq with Q as a set of RS;
(let Gh be the hypothesis)
output Gh and terminate;

end.

With this algorithm, we can obtain the following
theorem.

Theorem 5 The class of mode selective linear lan-
guages is PAC learnable with ε = 0 if the learner
knows δ, |Pt| and d. Where the time complexity is
bounded by a polynomial of δ, |Pt|, d and the maxi-
mum length of example words. �

Algorithm 2
INPUT : δ;
OUTPUT: a hypothesis Gh;
begin

i := 1, Q := ∅;
repeat

take i examples;
(let M be the set of example words)
Q := Q ∪ {w ∈ M | w ∈ Lt};
execute Aq with Q as a set of RS;
(let Gh be the hypothesis)
take ni examples;
(let K be the set of example words)
if (∀w ∈ K, w ∈ Lt ⇐⇒ w ∈ L(Gh))
then

output Gh and terminate;
fi
i := i + 1;

until (forever)
end.

With this algorithm, we can obtain the following
theorem.

Theorem 6 Algorithm 2 terminates with a proba-
bility at least 1− δ. If it terminates then the hypoth-
esis is PAC and the time complexity is bounded by a
polynomial of δ, |Pt|, d and the maximum length of
examples. �

We note that Algorithm 2 runs forever with a proba-
bility δ. Thus, this is not precise PAC learning algo-
rithm.

5 The query learning algorithm

In this section, we describe the exact learning algo-
rithm for mode selective linear languages via mem-
bership queries and a set of RS. This algorithm
is based on the algorithm for simple deterministic
languages[5]. Let Q be the given set of RS. The fol-
lowing R is the set of candidates for nonterminals.

R = {(x, y, z) | x, z ∈ Σ∗, y ∈ Σ+, x · y · z ∈ Q}
∪{(σ, w, σ) | w ∈ Q}
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and we define T : R × Σ ∗ → {0, 1} as

T ((u, v, w), x) = MEMBER(u · x · w).

Assume that W ⊆ Σ∗ is a set of words for partition-
ing R. At the beginning of the learning algorithm,
W = ∅ and it grows up step by step. We define an
equivalence relation π= over R such that

r
π= r′ ⇐⇒ T (r, w) = T (r′, w)

for any w ∈ W where r, r′ ∈ R. In addition, let
Bπ(r) = {r′ ∈ R | r′ π= r}.

Now, a CFG Gπ = (R/π,Σ , Pall/π, Sπ) is defined
as follows;

R/π = {Bπ(r) | r ∈ R},
Sπ = Bπ((σ, w, σ)),

where w ∈ Q, and

Pall/π = {Bπ((u1, a, u3)) → a | a ∈ Σ ,

(u1, a, u3) ∈ R}
∪{Bπ((u1, au2, u3)) → aBπ((u1a, u2, u3))

| (u1, au2, u3), (u1a, u2, u3) ∈ R, a ∈ Σ}
∪{Bπ((u1, u2a, u3)) → Bπ((u1, u2, au3))a

| (u1, u2a, u3), (u1, u2, au3) ∈ R, a ∈ Σ}
∪{Bπ((u1, au2b, u3)) → aBπ((u1a, u2, bu3))b

| (u1, au2b, u3), (u1a, u2, bu3) ∈ R,

a, b ∈ Σ}.
From this CFG Gπ, the learner deletes some rules

according to following conditions. Now, let A, B ∈
R/π and a ∈ Σ .

Condition 7 Let u1, u2 ∈ Σ∗, Bπ(rA), Bπ(rB) ∈
R/π and Bπ(rA) → u1Bπ(rB)u2 be in Pall/π. If there
exists w ∈ W such that T (rA, u1wu2) = T (rB, w)
then delete Bπ(rA) → u1Bπ(rB)u2 from Pall/π. �

Condition 8 Let u1, u2 ∈ Σ∗, Bπ(rA), Bπ(rB) ∈
R/π and Bπ(rA) → u1Bπ(rB)u2 be in Pall/π. If
there exists w ∈ W such that T (rB, w) = 1 and
w �∈ LGπ(Bπ(rB)) then delete Bπ(rA) → u1Bπ(rB)u2

from Pall/π. �

When the above deletions are repeated |Pall/π| times,
there is no rule which satisfies both of the above con-
ditions. Such a set of rules Pall/π is called reduced.
The learner selects base grammars G from Gπ.

1. Let P0 = PΣ .

2. For every A ∈ R/π and every pair of a ∈ Σ and
b ∈ Σ including a = b, select a rule which is of
the form A → aBb from Pall/π arbitrarily, then
add them to P0. Now, |P0| is at most |R/π||Σ |2.

3. For every rule in Pall/π which is of the form A →
aB or A → Bc, the rule is added to P0 if P0 still
holds a rule set of some mode selective linear
grammar. Such addition is independent of the
order of rule selection from Pall/π.

4. Let G0 be a mode selective linear grammar such
that G0 = (R/π,Σ , P0, Sπ).

5. For a rule A → u1Br2 in Pall/π, let P (A →
u1Bu2) be a set of rules constructed by delet-
ing all inappropriate rules but A → u1Bu2 from
P0∪{A → u1Bu2} to be a rule set of some mode
selective linear grammar. We note that any re-
sults of these deletions are in the same set, thus
P (A → u1Bu2) is a unique set of rules.

6. Let G = {G(A → u1Bu2) | G(A → u1Bu2) =
(R/π,Σ , P (A → u1Bu2), Sπ), (A → u1Bu2) ∈
Pall/π}.

For base grammars G, the learner check the following
equivalence.

• For every A ∈ R/π and every pair of G1 ∈ G
and G2 ∈ G such that G1 �= G2, check whether
LG1(A) = LG2(A) or not.

If it holds that all the above grammars are equivalent
then the learner outputs any G ∈ G and terminates.
Otherwise, adding all sub-words of w ∈ Σ ∗ such that
w ∈ LG1(A)∆LG2(A) into W for a next hypothesis.
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