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Abstract

queries in some special settings. Where the new sub-class of linear languages includes the class of regular

We show polynomial time PAC learnability of a sub-class of linear languages with membership

languages and the class of even linear languages. For this sub-class, we consider two learning settings as
follows. The first case is when the learner knows both of the minimum probability of appearing a specific
rule in an example and the size of a grammar which generates the target language. The second case is
when the learner does not have to terminate with a small probability. In both cases, the sub-class of linear
languages is learnable by supervising algorithms of an exact learning algorithm via membership queries

and a set of representative samples.

1 Introduction 2 Preliminaries

In this paper, we show that a sub-class of linear
languages is polynomial time learnable via mem-
bership queries and examples in two special set-
tings. The sub-class of linear languages is newly de-
fined by us such that it includes the class of regu-
lar languages and the class of even linear languages
which is polynomial time learnable via queries and
counterexamples[4].

A context-free grammar (CFG for short) is a 4-tuple
G = (N,X,P,S). Let o be the word whose length
is 0. Assume that all CFGs are o-free. In this pa-
per, yYA~' %'yﬂ'y’ denotes the derivation from A~

to v647' in G. The language generated from v by G
is denoted by Lg(y) = {w € X* | 'y%w} The lan-
guage generated by G is denoted by L(G) = L¢(S).

In both settings, the learnability is shown by a A nonterminal A € N is said to be reachable if

front-end algorithm which supervises an exact learn-
ing algorithm with membership queries and a set of
representative samples.

S:;MUAB for some w € XY*, § € N* and a non-

terminal D € N is said to be live if Lg(D) # (0. For
two CFGs G and G2, L(G1)AL(G2) denotes the set
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{we X*|we (L(G1) — L(G2)) U(L(G2) — L(Gy))}.
A CFG G is a linear grammar iff every rule in G is
one of the form A — aBb, A — aB, A — Bb or
A —afora,be XY and A, B € N. Any other defini-
tions about formal language theories are referred to
[2].

Assuming a probability distribution D over X* and
let Pr(w) be the probability for w € X*, a hypothe-
sis Ly, is probably approximately correct[6] (PAC for
short) iff

PriP(LpbAL;) <e|>1-96

holds where P(L,ALy) is the probability of difference
between Ly and L;. Any other definitions about PAC
learning are referred to [3].

A membership query MEMBER(w) for w € X*
on a linear language L, replies with 1 if w € Ly or 0
otherwise.

In this paper, we assume that the learner can use
membership queries and examples.

3 Mode selective linear lan-

guages

We define a new sub-class of linear languages to show
the learnability via membership queries and exam-
ples.

3.1 Definitions and properties

A linear grammar G = (N, X, P,S) which satisfies
the following is called a mode selective linear gram-
mar:

If arule A — aBcisin P for A,B € N and a,c €
Y, then none of A — aCe¢, A — aC and A — Cc are
in P for any C' € N such that C # B.

Ifarule A— aBisin P for A,B€ N and a € X,
then

1. neither A — aCc¢ nor A — aC is in P for any
c € XY and any C € N such that C' # B, and

2. there is no rule in P such as A — Db for any
D e N and any b € X.

Ifarule A— Baisin P for A,B€ N and a € X,
then

1. neither A — ¢Ca nor A — Ca is in P for any
c € XY and any C € N such that C' # B, and

2. there is no rule in P such as A — bD for any
D e N and any b € X.

In words, when the derivation for w € X* is pro-
ceeded to S:guAv where u,v,z € X* a,b € Y and

uazbv = w, we can select a rule for the next deriva-
tion in deterministic with a and b.

Throughout this paper, we assume that the tar-
get language is a mode selective linear language de-
noted by L; and G; denotes some mode selective lin-
ear grammar such that L(G:) = L.

Theorem 1 The class of mode selective linear lan-
guages is incomparable to the class of simple deter-
ministic languages and contains the class of regular
languages and the class of even-linear languages. O

Theorem 2 Let G = (N, X, P,S) be a mode se-
lective linear grammar and w € L(G). Consider a
derivation such that

S %} wlAwg

where wyaubws = w for wy,ws € X*, a,b € X and
u € XF. Then, there is exactly one rule in P whose
left-hand side is A and which can be used in a deriva-
tion of A % aub. O

From this theorem, aub € L(A) iff wiaubws € L.
That is, we can observe behavior of a nonterminal by
membership queries for Ly.

3.2 Representative samples

We define a set of representative samples of a linear
language L for learning algorithms shown in later.

Definition 3 Let G = (N, X, P, S) be a linear gram-
mar such that every A € N is reachable and live. Let
@ be a finite subset of L(G). Then Q is a set of repre-
sentative samples (RS for short) of G iff the following
holds.

e For any A — aBc in P, there exists a word
w € @ such that S:ngy?xchy%w for

some z,y € L*. O

From this definition, for any linear grammar G =
(N, X, P,S), there exists a set of RS @ such that
QI < |P|.

Definition 4 For a linear language L, a finite set
@ C L is a set of RS iff there exists a linear grammar
G = (N, X, P,S) such that L(G) = L and Q is a set
of RS of G. O

We can find an RS of a linear grammar G =
(N, X, P,S) in time of a polynomial of |N|, | X|.
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4 PAC learnability

We consider that how many examples are needed to
construct a set of RS. For every rule A — [ where
ﬂ S (Nt U 2)+ in Pt, let

Z(A—p) = {weX™| Sté’;()élAOéQ?

a1fas = w}
Gy

for a1, ag € (N U X)*. Then, a probability Pr(A —
() is defined as follows;

Pr(A—p)=

Z Pr(u).

w€Z(A—B)

It is to say that Pr(A — () is an appearing proba-
bility of A — @ when a sample word is given. Now,
let d = min{Pr(A — B) | A — [ in P}, then the
probability that the rule A — (8 does not appear in
derivations of m samples is bounded by (1 — d)™.
There are |P;| rules, thus a set of m samples which
satisfies
|[P|(1—d)™ <6

is a set of RS with a probability at least 1 — §. Let
m>—3 1og(|1§—t|), then

‘Pt|efdm

d.

|P|(1—d)™ <
<

On the other hand, it has been proved that equiv-
alence checking between a hypothesis and the tar-
get language can be replaced by checking polyno-
mial examples on the PAC criterion[l]. Now, let
n; > T (log(§) + (log2)(i + 1)) for the learner’s i-th
guess, then the hypothesis which is consistent to n;
examples satisfies the PAC criterion.

Thus, if there exists an exact learning algorithm
via membership queries and a set of RS then the fol-
lowing two learning algorithm can be thought. Let
A, be such an exact query learning algorithm.

Algorithm 1

INPUT : 0, d and |P|;

OUTPUT: a hypothesis Gp;

begin
take m examples;
(let M be the set of example words)
Q:=QU{weM|we L};
execute Ay with @) as a set of RS;
(let G}, be the hypothesis)
output G5, and terminate;

end.

With this algorithm, we can obtain the following
theorem.

Theorem 5 The class of mode selective linear lan-
guages is PAC learnable with ¢ = 0 if the learner
knows ¢, |P;| and d. Where the time complexity is
bounded by a polynomial of §, |P;|, d and the maxi-
mum length of example words. a

Algorithm 2

INPUT : ¢;
OUTPUT: a hypothesis Gp;
begin

1:=1,Q :=0;

repeat

take i examples;
(let M be the set of example words)
Q=QU{weM|we L}
execute A, with @) as a set of RS;
(let G}, be the hypothesis)
take n,; examples;
(let K be the set of example words)
if Vwe K,we L < w € L(G}))
then

output GG, and terminate;

fi
1:=1+1;
until (forever)

end.

With this algorithm, we can obtain the following
theorem.

Theorem 6 Algorithm 2 terminates with a proba-
bility at least 1 — 4. If it terminates then the hypoth-
esis is PAC and the time complexity is bounded by a
polynomial of 4, |P|, d and the maximum length of
examples. O

We note that Algorithm 2 runs forever with a proba-
bility 6. Thus, this is not precise PAC learning algo-
rithm.

5 The query learning algorithm

In this section, we describe the exact learning algo-
rithm for mode selective linear languages via mem-
bership queries and a set of RS. This algorithm
is based on the algorithm for simple deterministic
languages([5]. Let @ be the given set of RS. The fol-
lowing R is the set of candidates for nonterminals.

R:{(x,y,z) | T,z € Z*vyé Z+,x~y~z€ Q}
U{(o,w,0) |w e Q}
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and we define T': R x ¥* — {0,1} as
T((u,v,w),z) = MEMBER(u-x - w).

Assume that W C Y* is a set of words for partition-
ing R. At the beginning of the learning algorithm,
W = () and it grows up step by step. We define an
equivalence relation = over R such that

r=r <= T(r,w) =T w)

for any w € W where r,7’ € R.
Ba(r)={r'" € R| 7" Er}.

Now, a CFG G, = (R/m, X, Pan/m, Sr) is defined
as follows;

In addition, let

R/m={Bx(r) | r € R},

Sy = Br((o,w,0)),
where w € @, and

Pay/m={Bz((u1,a,u3)) »a|a€ X,
(u1,a,us) € R}

U{Bx((u1,auz,us)) — aB((uia,uz,us))
| (u1, aug, us), (u1a,us,us) € R,a € X'}

U{Bx((u1,u2a,us3)) — Br((u1,us,aus))a
|

(
(
(u1,uga,us), (ur, uz,aus) € Rya € X'}
((u1,auzb,uz)) — aBr((uia, uz, bus))b
(

U{Bx
| (w1, augd, us), (ura,us,bus) € R,
a,be X},

From this CFG G, the learner deletes some rules
according to following conditions. Now, let A, B €
R/mand a € X.

Condition 7 Let uj,us € X*, Br(ra), B:(rg) €
R/mand By (ra) — u1 Bx(rp)us be in P,y /7. If there
exists w € W such that T(ra,uqwuz) = T(rp,w)
then delete Br(ra) — u1Bx(rp)uz from Py /m. O

Condition 8 Let uj,us € X*, By(ra), Bz(rg) €
R/m and Br(ra) — u1Bx(rg)us be in Py /m. If
there exists w € W such that T(rp,w) = 1 and
w & L, (Bx(rp)) then delete By (ra) — u1 Bz (rp)us
from Py /7. O

When the above deletions are repeated | P,y /7| times,
there is no rule which satisfies both of the above con-
ditions. Such a set of rules Puy /7 is called reduced.
The learner selects base grammars G from G ;.

1. Let P() = PE.

2. For every A € R/m and every pair of a € X and
b € X including a = b, select a rule which is of
the form A — aBb from P, /7 arbitrarily, then
add them to Py. Now, |Py| is at most |R/7||X|?.

3. For every rule in P,y /7 which is of the form A —
aB or A — Bc, the rule is added to Py if Py still
holds a rule set of some mode selective linear
grammar. Such addition is independent of the
order of rule selection from Pay /7.

4. Let Gg be a mode selective linear grammar such
that Go = (R/m, X, Py, Sx).

5. For a rule A — wu1Bre in Py /m, let P(A —
u1Bus) be a set of rules constructed by delet-
ing all inappropriate rules but A — uyBusy from
PyU{A — u3Bus} to be a rule set of some mode
selective linear grammar. We note that any re-
sults of these deletions are in the same set, thus
P(A — ujBus) is a unique set of rules.

6. Let G = {G(A — u1Bug) | G(A — w1 Bug) =
(R/m, X, P(A — w1 Busg),Sz),(A — ui1Bug) €
Pau/’ﬂ'}.

For base grammars G, the learner check the following
equivalence.

e For every A € R/m and every pair of G1 € G
and Gy € G such that G; # G2, check whether
L, (A) = Lg,(A) or not.

If it holds that all the above grammars are equivalent
then the learner outputs any G € G and terminates.
Otherwise, adding all sub-words of w € X* such that
w € Lg,(A)ALg,(A) into W for a next hypothesis.
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