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概要

半導体露光装置のレンズシステムに対するレンズ個体の最適な組合せ法を考える．レンズシステムは m 枚
のレンズから構成されるとする．また，レンズ個体は n 枚ずつのロット単位として与えられ，m 個のロット
A1, A2, . . . , Am のすべてのレンズ個体を用いて n 個のレンズシステムを作る．レンズ個体の誤差は多次元ベ
クトルで与えられ, システムの誤差は，システムを構成する個体の誤差ベクトルの和の最大成分とする．本論
文の目的は，n 個のレンズシステムの中の最大誤差を最小とする組合せ方法を提案することである．まず問題
を，辺のコストがベクトルであり組合せの中の最大値を最小にすることを目的とする，一般の割当て問題を変
形した割当て問題として記述する．そして，多項式時間の新しいアルゴリズムを提案し，提案したアルゴリズ
ムによる計算例を示す．
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Abstract

We consider the problem of optimally combining individual lenses for the lens systems used in semiconductor exposure

equipment. Given a lens system with m lenses A1, A2, . . . , Am, then for n lens systems we need n individual lenses for

each Ai. Our objective is to combine the n individual lenses in such a way that the maximum aberration occurring

in any of the n combinations is minimized. We formulate the problem as a modified assignment problem with a

vector cost and a minimax objective function. A new algorithm of polynomial time is proposed and the results from

numerical experiments are presented.

1 Introduction

We consider a lens system for semiconductor ex-
posure equipment consisting of m lenses, which
we denote as A1, A2, . . . , Am. (We will refer to
A1, A2, . . . , Am as “components.”) Factories pro-
ducing such equipment normally receive these com-
ponents in lots of many individual lenses. For the
sake of simplicity, suppose we have from these lots

n lenses for component A1, n lenses for component
A2, . . . , n lenses for component Am, and we want
to combine them to make n lens systems. Let us
choose i1th lens from the lot of A1, the i2th lens
from the lot of A2, . . . , the imth lens from the lot
of Am; then choose the i′1th lens from the lot of
A1, the i′2th lens from the lot of A2, . . . , the i′mth
lens from the lot of Am; . . . ; and finally, choose the
i
(m)
1 th lens from the lot of A1, the i

(m)
2 th lens from
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the lot of A2, . . . , the i
(m)
m th lens from the lot of Am.

Thus, we have selected n combinations of lenses for
n lens sysmtems. Although such lenses are manu-
factured very precisely, each lens will have its own
unique aberration (error). Therefore, a variety of
compounded aberration combinations (i.e., a vari-
ety of lens systems of differing total aberration) will
result. Some of the combinations (some of the lens
systems) will have a small compounded aberration
while others will have a large compounded aberra-
tion. Our goal is to select optimum combinations,
that is, we want to combine lenses so as to minimize
the maximum aberration occurring in any one lens
system. Normally, aberration for each lens is given
as a vector (of more than 300 dimensions). We de-
note the aberration vector of the ith component and
jth lens by aij (i = 1, 2, . . . , m; j = 1, 2, . . . , n).
In the following discussion, we consider the case of
m = 2 and assume that all entries of aij ’s are non-
negative.

A1

A2

Am

Figure 1: Lens system

In a former study [1] we proposed an algorithm
of obtaining optimal combinations when the aber-
ration vector is one dimensional (i.e., scalar). That
algorithm is as follows:
Algorithm 1
Step 1: Arrange n lenses for the A1 component in
ascending order.
Step 2: Arrange n lenses for the A2 component in
ascending order.
Step 3: Combine the best lens for A1 and the worst
lens for A2; combine the second best lens for A1 and
the second worst lens for A2; combine the third best
lens for A1 and the third worst lens for A2; and so
on. �

In this paper, we propose an algorithm for se-
lecting optimal combinations in the case where the
aberration vector is two dimensional.

2 Formulation as an Integer
Programming Problem

We first formulate the problem as a 0-1 integer pro-
gramming problem.
Problem 1

Minimize z
subject to

∑

j

xjk = 1 (k = 1, 2, . . . , n),

∑

k

xjk = 1 (j = 1, 2, . . . , n),

∑

k

(a(1)
1j + a

(1)
2k )xjk ≤ z,

∑

k

(a(2)
1j + a

(2)
2k )xjk ≤ z,

z ≥ 0,

xjk = 0 or 1. �

Here a
(1)
1j is the first entry of a1j , and a

(2)
1j is the

second entry. Similarly, a
(1)
2k , a

(2)
2k are entries of a2k.

Variable xjk takes the value 1 when a1j is combined
with a2k, and 0 otherwise. The integral condition
for xjk is essential, otherwise we would usually ob-
tain a noninteger solution.

3 Algorithm for Problem 1

In this section, we propose an algorithm that makes
use of the problem character rather than trying to
solve Problem 1 directly as an integer programming
problem. The fundamental idea is to repeatedly
solve the well known assignment problem.

3.1 Preliminaries

Lemma 1 For (a(1)
1j , a

(2)
1j ) ∈ A1, (a

(1)
2k , a

(2)
2k ) ∈ A2,

we assume that
m

(1)
1 = E(a(1)

1j ), m
(2)
1 = E(a(2)

1j ),
(j = 1, 2, . . . , n);

m
(1)
2 = E(a(1)

2k ), m
(2)
2 = E(a(2)

2k ),
(k = 1, 2, . . . , n).

We consider the permutation π on {1, 2, . . . , n}
which minimizes

max
1≤j≤n

{a(1)
1j + a

(1)
2π(j), a

(2)
1j + a

(2)
2π(j)}.
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The permutation π is that which for each j makes
the larger of a

(1)
1j +a

(1)
2π(j) and a

(2)
1j +a

(2)
2π(j) to m

(1)
1 +

m
(1)
2 or m

(2)
1 + m

(2)
2 as close as possible. �

From Lemma 1, we can conclude that our strat-
egy is to find the permutation producing the larger
of the a1j +a2k entries in the sum of their averages.

Let X be a probabilistic variable that satisfies
E(X) = m and V (X) = σ2. We can transform
X to another probabilistic variable Z that satisfies
E(Z) = 0 and V (Z) = 1 by the z-transformation

Z =
X −m

σ
.

We call such a transformation the normalization of
X .

Regarding a
(1)
1j as a probabilistic variable and as-

suming that ã
(1)
1j represents its normarilzation, ev-

idently the average of ã
(1)
1j is 0 and ã

(1)
1j becomes 0

only when a
(1)
1j = m

(1)
1 . The z-transformation is a

linear transformation, so if a
(1)
1j increases from m

(1)
1

linearly, and ã
(1)
1j increases from 0 linearly.

Similarly applying the z-transformation to a
(2)
1j ,

we denote its normalization by ã
(2)
1j . Putting

(ã(1)
1j , ã

(2)
1j ) on a Euclid (ã(1)

1j , ã
(2)
1j )-plane, then

(ã(1)
1j , ã

(2)
1j ) corresponding to (a(1)

1j , a
(2)
1j ) satisfies

a
(1)
1j > m1

(1) and a
(2)
1j > m1

(1) is in the first quadran-

t. This is similar for (ã(1)
1j , ã

(2)
1j ) in the second,third

and fourth quadrants. The origin of the plane cor-
responds to (a(1)

1j , a
(2)
1j ) = (m(1)

1 , m
(2)
1 ) and the posi-

tion of (ã1
1j , ã

2
1j) depends linearly on a

(1)
1j − m

(1)
1

and a
(2)
1j − m

(2)
1 , respectively. We also apply z-

transformation to a
(1)
2k and a

(2)
2k and denote their

normalizations by ã
(1)
2k and ã

(2)
2k , respectively.

Def. 1 (Maximum norm)
For u = (u1, u2) and v = (v1, v2),

dmax(u,v) = max{|u1 − v1|, |u2 − v2|}
defines a norm, which we will call the “maximum
norm.” �

By the normalization, a
(1)
1j + a

(1)
2k = m

(1)
1 + m

(1)
2

and a
(2)
1j + a

(2)
2k = m

(2)
1 + m

(2)
2 become equivalent

to ã
(1)
1j + ã

(1)
2k = 0 and ã

(2)
1j + ã

(2)
2k = 0, respectively.

Therefore we can state our problem as follows:
To find the permutation π on {1, 2, . . . , n} such

that the largest value of the 2n values

|ã(1)
1j + ã

(1)
2π(j)|, |ã(2)

1j + ã
(2)
2π(j)|,

is as small as possible.

To realize this, for every (ã(1)
1j , ã

(2)
1j ) we take

the symmetrical point (−ã
(1)
1j ,−ã

(2)
1j ) as the ori-

gin. It is then sufficient to find the permuta-
tion π that combines with (ã(1)

2k , ã
(2)
2k ) to produce

the smallest as possible maximum norm. That
is, apply the symmetric transformation for the o-
rigin to all (ã(1)

2k , ã
(2)
2k ) so they are transformed

to (−ã
(1)
2k ,−ã

(2)
2k ), then find the permutation that

minimizes the maximum norm of (ã(1)
1j , ã

(2)
1j ) and

(−ã
(1)
2k ,−ã

(2)
2k ).

Here, we restate our problem as follows:
Problem 1′

Find the permuation π on {1, 2, . . . , n} that min-
imizes

max
j=1,2,...,n

{dmax((ã
(1)
1j , ã

(2)
1j ), (−ã

(1)
2π(j),−ã

(2)
2π(j)))}.

3.2 Calculate an Approximate Solu-
tion

In order to obtain an approximate solution for
Problem 1′, we solve it as a minimum cost assign-
ment problem. Let V1 and V2 be vertex sets, and
for v(a1j) ∈ V1 and v(a2k) ∈ V2 let ejk be the di-
rected edge from v(a1j) to v(a2k) and cjk be the its
weight defined as:

cjk = max{|ã(1)
1j + ã

(1)
2k |, |ã(2)

1j + ã
(2)
2k |}.

Then, our problem is to minimize

z =
∑

(j,k)

cjkxjk

subject to
∑

k

xjk = 1,
∑

j

xjk = 1, xjk ≥ 0.

This solution is not exact for Problem 1′, because
it is not the maximum cost but the total cost that
is minimized by the matching.

3.3 Algorithm for Problem 1′

We first define an algorithm A(R) as follows:
(1) Replace all cij ’s such that cij ≥ w by a suffi-
ciently large value R.
(2) Solve the assignment problem using the above
cij ’s.

We are going to find the smallest value R̂ (which
we will call “best max”) of R such that the ob-
jective function of the assignment by A(R) is not
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greater than R. We find R̂ by binary search. S-
ince the assignment problem is solved in polynomi-
al time (e.g., O(n3)) and the binary search is ex-
ecuted through n2 values, the total computational
time is also polynomial (e.g., O(n3 log n). Note that
log(n2) = 2 log n).
Algorithm 2
Step 1: For all j, k (j, k = 1, 2, . . . , n) compute

djk = max(a(1)
1j + a

(1)
2k , a

(2)
1j + a

(2)
2k )

and store these values in an array w. Since there
are n2 of the djk’s, the size of array w is n2.
Step 2: Sort the entries of w in ascending order.
Step 3:
(0) sl ← 1; su← n2.
(1) mid← �(sl + su)/2�.
(2) Execute A(w[mid]).
(3) If the objective function of the assignment in
(2) is greater than best max, then sl ← mid; else
su← mid.
(4) If su− sl > 1, then go to (1).
Step 4: The assignment in Step 3 is the solution.

4 Numerical Experiments

We present the results obtained by solving the in-
teger programming problem directly and apply our
proposed algorithm to the same examples. Our
computational environment is as follows:

CPU Intel Celeron 2.0 GHz
Memory 512 MB
OS MS-Windows 2000

We used the NUOPT Ver. 5.1.3 mathematical pro-
gramming and modelling solver by the Mathemat-
ical Systems Institute, Inc.1.

In every problem, the number of data n = 50.
For each a1j and a2k, we give correlational coeffi-
cients ρ1 for a

(1)
1j and a

(2)
1j and ρ2 for a

(1)
2k and a

(2)
2k .

Probabilistic variables a
(1)
1j , a

(2)
1j , a

(1)
2k , a

(2)
2k follow the

normal distribution and all have average and vari-
ance of 10.0 and 0.0, respectively.

Table 1 : Calculate by Algorithm 2 and NUOPT
ρ1 ρ2 optimal value time(s)

Algorithm 2 NUOPT
-1.0 -1.0 21.371368342 2.88 220.75
-1.0 1.0 21.576122778 2.12 258.91
-0.5 0.5 20.985355631 3.04 2694.45
0.0 0.0 20.902542908 3.21 1464.02
0.5 0.5 21.251067699 3.11 2147.94
1.0 1.0 20.174854698 2.58 10946.95

1http://www.msi.co.jp/nuopt/

5 Conclusions

In this paper, we considered a permutation that
minimizes the maximum component of n combina-
tions of two vectors. We first formulated this prob-
lem as an integer programming problem. We then
proposed an O(n3 log n) algorithm for the problem
and presented results from computational experi-
ments using the algorithm. The problem of finding
a permutation that minimizes the total cost of vec-
tor combinations, like the general assignment prob-
lem, is left to further research.
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