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Combining Imperfect Components (III) —

Minimax Optimization of Multidimensional Cost Error

Yuusaku Kamura Mario Nakamori

Department of Computer, Information, and Communication Sciences
Tokyo A & T University
Koganei, Tokyo 184-8588, Japan

Abstract

We consider the problem of optimally combining individual lenses for the lens systems used in semiconductor exposure
equipment. Given a lens system with m lenses A1, As, ..., A, then for n lens systems we need n individual lenses for
each A;. Our objective is to combine the n individual lenses in such a way that the maximum aberration occurring
in any of the n combinations is minimized. We formulate the problem as a modified assignment problem with a
vector cost and a minimax objective function. A new algorithm of polynomial time is proposed and the results from

numerical experiments are presented.

1 Introduction n lenses for component A, n lenses for component

As, ..., n lenses for component A,,, and we want

We consider a lens system for semiconductor ex-
posure equipment consisting of m lenses, which
we denote as Aj, Ag,..., Ap.  (We will refer to
A1, Ag, ..., Ay as “components.”) Factories pro-
ducing such equipment normally receive these com-
ponents in lots of many individual lenses. For the
sake of simplicity, suppose we have from these lots
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to combine them to make n lens systems. Let us
choose i1th lens from the lot of Ay, the isth lens
from the lot of Ao, ..., the i,,th lens from the lot
of A,,; then choose the #{th lens from the lot of
Aj, the i5th lens from the lot of As, ..., the i/,th
lens from the lot of A,,; ...; and finally, choose the
i{™th lens from the lot of Ay, the i{"th lens from


事務局 
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

事務局 
2004－MPS－50　(6)

事務局 
2004／6／22

事務局 
－25－


the lot of As, ..., the i%n)th lens from the lot of A,,.
Thus, we have selected n combinations of lenses for
n lens sysmtems. Although such lenses are manu-
factured very precisely, each lens will have its own
unique aberration (error). Therefore, a variety of
compounded aberration combinations (i.e., a vari-
ety of lens systems of differing total aberration) will
result. Some of the combinations (some of the lens
systems) will have a small compounded aberration
while others will have a large compounded aberra-
tion. Our goal is to select optimum combinations,
that is, we want to combine lenses so as to minimize
the maximum aberration occurring in any one lens
system. Normally, aberration for each lens is given
as a vector (of more than 300 dimensions). We de-
note the aberration vector of the ith component and
jth lens by a;; (1 = 1,2,...,m; j = 1,2,...,n).
In the following discussion, we consider the case of
m = 2 and assume that all entries of a;;’s are non-
negative.

Ay

Ay

Figure 1: Lens system

In a former study [1] we proposed an algorithm
of obtaining optimal combinations when the aber-
ration vector is one dimensional (i.e., scalar). That
algorithm is as follows:

Algorithm 1

Step 1: Arrange n lenses for the A; component in
ascending order.

Step 2: Arrange n lenses for the As component in
ascending order.

Step 3: Combine the best lens for A; and the worst
lens for As; combine the second best lens for A; and
the second worst lens for As; combine the third best
lens for A; and the third worst lens for As; and so
on. O
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In this paper, we propose an algorithm for se-
lecting optimal combinations in the case where the
aberration vector is two dimensional.

2 Formulation as an Integer
Programming Problem

We first formulate the problem as a 0-1 integer pro-
gramming problem.
Problem 1

Minimize =z

subject to

=1 (k=1.2,...,n),
J
ijkzl (j:172a"'7n)a
k

D _(aly +agd)e <

k
2 2
>-(@f) + i)z < =,
k
z >0,
5, =0 or 1. O

Here a%) is the first entry of a;;, and ag) is the

second entry. Similarly, ag?, agg are entries of agy.

Variable x 3, takes the value 1 when a;; is combined
with ag, and 0 otherwise. The integral condition
for x;1, is essential, otherwise we would usually ob-
tain a noninteger solution.

3 Algorithm for Problem 1

In this section, we propose an algorithm that makes
use of the problem character rather than trying to
solve Problem 1 directly as an integer programming
problem. The fundamental idea is to repeatedly
solve the well known assignment problem.

3.1 Preliminaries

Lemma 1 For (a%),ag)) € Ay, (a;}v),a;i)) € Ay,

we assume that

1 1 2 2
D =B, mi® = B2
(j=1,2,...,n);
1 1 2 2
my) = B(ay)), m” = E(ay),
(k=1,2,...,n).
We consider the permutation = on {1,2,...,n}
which minimizes
1 1 2 2
max {agj) + aéﬂ)(j), agj) + aéﬂ)(j)}.

1<j<n
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The permutation 7 is that which for each j makes

thze )larger of agj) +aél)(j) and aﬁ) +aéi)(j) to mgl) +
1

or m( )4 m( ) as close as possible. O
From Lemma 1, we can conclude that our strat-
egy is to find the permutation producing the larger
of the aj; 4 apy, entries in the sum of their averages.
Let X be a probabilistic variable that satisfies
E(X) = m and V(X) = 02. We can transform
X to another probabilistic variable Z that satisfies
E(Z)=0and V(Z) =1 by the z-transformation

X—-m
-

7 =

We call such a transformation the normalization of
X.
Regarding a(

suming that ag j) represents its normarilzation, ev-

) asa probabilistic variable and as-

idently the average of &(;) is 0 and &%) becomes 0

(1) — mgl) The z-transformation is a

1y
e (1) . 1
linear transformation, so if ag j) increases from mg )

only when a

linearly, and &%) increases from 0 linearly.

Similarly applying the z-transformation to agi),

we denote its normalization by Ezg).

a(l,),d@) on a FEuclid a(l),a() -plane, then
15 > %15 17071y

(aﬁ),aﬁ)) corresponding to (aﬁj,aﬁ’) satisfies

a%) > m%l) and a( )

Putting

> m( 1) is in the first quadran-

t. This is similar for (a(u)» a(li)) in the second,third

and fourth quadrants. The origin of the plane cor-

responds to (a%),agi)) (mg ), m§2)) and the posi-

tion of (aj;,a3;) depends linearly on a%) — m{V

g) - mg ), respectively. We also apply z-

transformation to agg and aéi)

normalizations by dgg and dgg, respectively.
Def. 1 (Maximum norm)

For u = (u1,u2) and v = (v1, v2),

and a

and denote their

dmax (1, v) = max{|u; — vy, |us — va|}

deﬁnes a norm, which we will call the “maximum
norm.’ O
By the normalization, ag]) + agk) = m(l) g )

and ag]) + agk) = m(z) + mg ) become equivalent

to agg) + aék) =0 and a(2) + dgc) = 0, respectively.

Therefore we can state our problem as follows:
To find the permutation 7 on {1,2,...,n} such
that the largest value of the 2n values

is as small as possible.

0270

To realize this, for every (a(ly,a(li)) we take

the symmetrical point (— a%),—d%)) as the ori-

gin. It is then sufficient to find the permuta-

tion 7 that combines with (agk),aéi)) to produce

the smallest as possible maximum norm. That
is, apply the symmetric transformation for the o-
rigin to all (aé}c),&ék)) so they are transformed

to (— aé}c), &éi)) then find the permutation that

minimizes the maximum norm of (a%),dgj)) and
(— 7 ~(2))

Qo » —Agk )-
Here, we restate our problem as follows:
Problem 1’
Find the permuation 7 on {1,2,...,
imizes

n} that min-

~(1) =(2) ~ (1) =(2)
J 11112ax {dmax((alj ’alj) (= Bor () _a27r(j)))}'

3.2 Calculate an Approximate Solu-
tion

In order to obtain an approximate solution for
Problem 1’, we solve it as a minimum cost assign-
ment problem. Let Vi and Vs be vertex sets, and
for v(ai;) € Vi and v(ag,) € Vo let ej; be the di-
rected edge from v(ay;) to v(ag) and cji be the its
weight defined as:

(1) (1)| |a(2) ~(2)‘}_

Cik = max{|a + Qs

Then, our problem is to minimize

z = E CikTjk

(4:F)

subject to

ijk = 17
k

xjr > 0.

ijk = 1a
J

This solution is not exact for Problem 1’, because
it is not the maximum cost but the total cost that
is minimized by the matching.

3.3 Algorithm for Problem 1’

We first define an algorithm A(R) as follows:
(1) Replace all ¢;;’s such that ¢;; > w by a suffi-
ciently large value R.
(2) Solve the assignment problem using the above
Cij7S.

We are going to find the smallest value R (which
we will call “best_maz”) of R such that the ob-
jective function of the assignment by A(R) is not
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greater than R. We find R by binary search. S-
ince the assignment problem is solved in polynomi-
al time (e.g., O(n?)) and the binary search is ex-
ecuted through n? values, the total computational
time is also polynomial (e.g., O(n®logn). Note that
log(n?) = 2logn).

Algorithm 2

Step 1: For all j,k (j,k=1,2,...,n) compute

= max) + o). of) + o)

and store these values in an array w. Since there
are n? of the d;;’s, the size of array w is n?.
Step 2: Sort the entries of w in ascending order.
Step 3:

(0) sl + 1; su « n2.
mid «— [(sl + su)/2].

Execute A(w[mid)).

If the objective function of the assignment in

(4) If su— sl > 1, then go to (1).
Step 4: The assignment in Step 3 is the solution.

4 Numerical Experiments

We present the results obtained by solving the in-
teger programming problem directly and apply our
proposed algorithm to the same examples. Our
computational environment is as follows:

CPU Intel Celeron 2.0 GHz
Memory 512 MB
OS MS-Windows 2000

We used the NUOPT Ver. 5.1.3 mathematical pro-
gramming and modelling solver by the Mathemat-
ical Systems Institute, Inc.!.

In every problem, the number of data n = 50.
For each a;; and as, we give correlational coeffi-
cients p; for a(llz) and a(li) and py for a;? éi)

J
Probabilistic variables a(ly, agi), aé}c), a;i) follow the

normal distribution and all have average and vari-
ance of 10.0 and 0.0, respectively.

and a

Table 1 : Calculate by Algorithm 2 and NUOPT

o1 p2 | optimal value time(s)
Algorithm 2 [ NUOPT
-1.0 | -1.0 21.371368342 2.88 220.75
-1.0 1.0 21.576122778 2.12 258.91
-0.5 0.5 20.985355631 3.04 2694.45
0.0 0.0 | 20.902542908 3.21 1464.02
0.5 0.5 | 21.251067699 3.11 2147.94
1.0 1.0 20.174854698 2.58 | 10946.95

Thttp://www.msi.co.jp/nuopt/

0280

5 Conclusions

In this paper, we considered a permutation that
minimizes the maximum component of n combina-
tions of two vectors. We first formulated this prob-
lem as an integer programming problem. We then
proposed an O(n?logn) algorithm for the problem
and presented results from computational experi-
ments using the algorithm. The problem of finding
a permutation that minimizes the total cost of vec-
tor combinations, like the general assignment prob-
lem, is left to further research.
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