0000 O0oDOooooooooo
IPSJ SIG Technical Report

20040 MPS[O 500 (4)

20040 60 22

Joooooooogoooooooogn

b ob,00 0g,b0o0 oobdg
gbooooo

gbobo,n~bubbogbubobogbobogbobooboboobobooobogan
gbobn0O00000O00O00DOODODOODOOD0. DO0bDO0bOobOOo0bOoboO0O, o0
gbobobobooobooboboboobobo. boooobobobooooboboDbo
gbobooboobooboboobob. oo, b00booooboboobuooobobooobogon

goo.

Node-disjoint Paths in a Transposition Graph

Yasuto Suzuki, Keiichi Kaneko and Mario Nakamori
Tokyo University of Agriculture and Technology

In this paper, we give an algorithm for the node-to-set disjoint paths problem in transposi-
tion graphs. The algorithm is of polynomial order of n for an n-transposition graph. It is
based on recursion and divided into two cases according to the distribution of destination
nodes. The maximum length of each path and the time complexity of the algorithm are
estimated and the average performance is evaluated based on computer experiment.

1 Introduction

Recently, research in parallel and distributed
computation has become more significant
because we cannot expect drastic improve-
ment of performance in sequential compu-
tation in the future. Moreover, extensive
research on so-called massively parallel ma-
chines has been conducted in recent years.
Hence, many complex topologies of intercon-
nection networks[1, 2, 5] have been proposed
to replace simple networks such as hyper-
cubes and meshes. A transposition graphl5]
provides one such new topology. It can in-
clude other topologies as its subgraphs, such
as hypercubes, star graphs and bubble-sort
graphs.

Unfortunately, there still remain unknowns
in several metrics for this topology despite
intensive research activities. Among the un-
solved problems is the node-to-set disjoint
paths problem: Given a source node s and
aset D ={dj,dg, - ,dr} (s € D) of k des-
tination nodes in a k-connected graph, find k
paths from s to each d; that are node-disjoint
except for s. This is one of the most im-
portant issues in the design and implemen-

g 170

tation of parallel and distributed computing
systems[3, 4, 6]. Once these k paths are
obtained, they achieve some fault tolerance;
that is, at least one path can survive with
k — 1 faulty components.

In general, node-disjoint paths can be ob-
tained in polynomial order time of the num-
ber of the nodes by the maximum flow algo-
rithm. However, in an n-transposition graph,
the number of nodes is equal to n!, so in this
case its complexity is too large. In this paper,
we propose an algorithm which is of polyno-
mial order of n instead of n!.

2 Preliminaries

In this section, we introduce definitions of
the transposition operation, transposition
graphs, and the shortest-path routing algo-
rithm in a transposition graph.

Definition 1 For an arbitrary permutation
U = Uiy - - U, of n symbols 1,2,--- ,n, the
transposition operation t; j(u) (1 <i < j <
n) is defined as follows:
i) (w)

= U U U] - U U] - U

事務局
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

事務局
2004－MPS－50　(4)

事務局
2004／6／22

事務局
－17－

1234

e
AV
o5
TAVAVAN

\’.~AWA"‘ZAVA
S Vv

Figure 1: An example of transposition graph.

Definition 2 An n-transposition graph, 7;,,
has n! nodes. Each node has a unique ad-
dress which is a permutation of n symbols
1,2,---,n. A node which has an address
u = ujug---u, is adjacent to n(n — 1)/2
nodes whose addresses are elements of the set
{t(i,j)(u) |1<i<j<n}.

Figure 1 shows an example of transposi-
tion graph. In an n-transposition graph 7, a
subgraph induced by nodes that have a com-
mon symbol k at the ith position of their ad-
dresses constitutes an (n — 1)-transposition
graph. In this paper, we denote the subgraph
induced by nodes whose last symbols are k as
Th_1k. For given nodes s = s1s3---s, and
d = didy---d, in T}, we use the routing al-
gorithm route shown in Figure 2 to obtain
one of the shortest paths between s and d.
We assume that the address of a node is rep-
resented by using a linear array and each ele-
ment of the array consists of a word that can
store the value n. Then its time complexity
is O(n?) and its path length is O(n).

For an arbitrary node u, let N(u) denote
the set of neighbor nodes of w.

3 The algorithm

In this section, we propose an algorithm for
the node-to-set disjoint paths problem in 7,.

0180

procedure route(s, d);
begin
c :=s; P := [c];
for ¢ := 1 ton—1
if ¢; <> d; then begin
find j such that ¢; = d;;
c =15 (c); P := P ++ [c]
end
end
end;

Figure 2: A shortest-path routing algorithm
route.

3.1 Classification

If n < 2, the problem is trivial. That is, a
2-transposition graph consists of two nodes
and an edge between them. Hence, if one
node is the source, then the other one is the
destination, and the path is the edge itself.
Therefore we assume n > 3 in the following.
We can fix the source node as s = 12---n,
taking advantage of the symmetric property
of T,,. Let D ={d;,ds,- - ,dn(nfl)/g} be the
set of destination nodes. The algorithm has
recursive structure and it is divided into two
procedures depending on |D\T,,_in| where
| D\T,,—1n| represents the number of destina-
tion nodes that are not included in T;,_1n.

3.2 Case 1: |D\T,_1n|<n-—1

This subsection presents the procedure for
the case that |D\T,,—in| <n — 1.

Step 1 In T,,_1n, by calling the algorithm
recursively, construct node-disjoint
paths from s to (n — 1)(n — 2)/2
arbitrary destination nodes in 7,,_17n.

Step 2 If a destination node, say, d, other
than these (n — 1)(n — 2)/2 destination
nodes is on one of the constructed path
from s to, say, dy, then discard the sub-
path from d, to d, and exchange the in-
dices = and y. Repeat this step until no
destination node is on the paths except
for the (n — 1)(n — 2)/2 nodes.

Step 3 Select edges (s,t(;n)(s)) (1 < i <
n — 1). Note that ¢(; ,)(s) € Tn—1i.

事務局
－18－

Step 4 For each T,,—1i (1 < i < n — 1),
if there exist some destination nodes in
T,_11, choose one of the nearest nodes
among them from t(; ,y(s). Construct
the shortest path between these two
nodes.

Step 5 For each T),—1i (1 < i < n—1), if
there exists no destination node, choose
one of the destination nodes to which
the path is not yet constructed from
s. Let the chosen node be d,. Select
an edge (N(d,) N T,-1i,d,) and con-
struct the shortest path from ¢(; ,y(s) to
N(d,) NT—1i.

3.3 Case 2: |D\T,_in| >n

This subsection presents the procedure for
the case that |D\T,,—1n| > n.

Step 1 For each destination node d; outside
T,,_1n, select two nodes u; and c; satis-
fying the following conditions if possible.

® C = di7
o u; = (N(Cz) N Tn_ln)\D,
® u; =soru; #ujif i #j.
Step 2 For each destination node d; outside
Tn_1n, if ¢; for d; was not selected in

Step 1, select two nodes u; and ¢; satis-
fying the following conditions if possible.

e ¢c; € N(d;)\D,
o u; = (N(¢;) NTp—1n)\D,
® u; = s oru; #ujif i # j,
o ¢ #cjifi#j.
Step 3 For each destination node d; outside
T,_1n, if ¢; for d; was not selected in pre-

vious steps, select three nodes wu;, ¢; and
b; satisfying the following conditions.

e c; € N(d;)\D,

e b, € (N(¢;)\T\,—1n)\D,

e u; = (N(bj)) NT,—1n)\D,
® u; = s oru; #ujif i # j,
o b £bifi],

0190

o ¢ #cjifi#j,
® b; # c; for any ¢ and j.

Step 4 Let M and U be a set {d; | di &
Th-1n} U{c; | ¢; # di} U{b;} and a set
{u;}, respectively.

Step 5 Select edges (s,t(;,)(s)) (1 < i <
n — 1). Note that ¢(; ,)(s) € Tn-11.

Step 6 For each T,,—1i (1 < i < n—1),
if there exist some nodes in M N T, _11
and a path from ¢(; ,)(s) is not yet con-
structed, choose one node v; among the
nodes in M N T, _1i such that v; is one
of the nearest nodes from f(;,)(s) in
M NT, _q1.

Step 7 For each v; (1 < i < n—1), if v,
is a destination, say, d,, construct the
shortest path from t(i,n)(s) to d,, and
update M and U by M\{bs, ¢z, d;} and
U\{u,}, respectively. In this step, if M
is updated, go back to Step 6.

Step 8 For each v; (1 < i < n—1),if v; is
one of ¢;’s, say, c;, construct the short-
est path from t; ,)(s) to ¢, and select
an edge (cg,d;), and update M and U
by M\{by,cs,d,} and U\{u,}, respec-
tively. In this step, if M is updated, go
back to Step 6.

Step 9 For each v; (1 < i < n—1), v is
one of b;’s, say, b,. Construct the short-
est path from #(; ,y(s) to b,. Update M
and U by M\{by,cs,d;} and U\{u,},
respectively.

Step 10 For each T,,_1i (1 < ¢ < n —1),
if there exists no node in M N T,_1i
and a path from #(;,)(s) is not con-
structed, choose one destination node
from M, say, d, select an edge (N (dz)N
T-1i,d;), construct the shortest path
from #(; ,)(s) to N(dz) N Tp-17, and up-
date M and U by M\{bs,cs,d,} and
U\{uz}

Step 11 In T,_1n, by calling the al-
gorithm recursively, construct node-

disjoint paths from s to the nodes in
(DNT,—1n)UU.

事務局
－19－

:

maximum + e

s
average o L
0.91n e o
n ++*f &
= L0l
T Lraties
1o% R
R :
§ 10} Rt
o N e C
5 o
o
N

—_g’ o
9 o
o °

. o

o

1 L
10

n for n-transposition graph

Figure 3: Length of each path.

Step 12 For each u; in U, construct a path
from u; to d; via b; and ¢; if any.

Theorem 1 For an n-transposition graph,
n(n — 1)/2 paths constructed by our algo-
rithm are node-disjoint except for s. The
time complexity and the maximum length of
each path are O(n") and 3n — 5, respectively.

4 Computer experiment

To evaluate the algorithm performance, we
conducted the following computer experi-
ment. The algorithm is implemented by the
programming language C. The program is
compiled by gcc with -02 option and ex-
ecuted on a target machine with an Intel
Celeron 400MHz CPU and a 128MB memory

unit.

1. Fix the source to be 12---n and se-
lect destinations randomly other than
the source.

2. Apply the algorithm and measure the
length of each path and execution time.

Experiment is performed 1,000 times for
each n from 2 to 50. Results are shown in Fig-
ure 3 and Figure 4. From these figures we can
observe that the average length of each path
and the average time of paths construction
are of polynomial order and approximately
O(n) and O(n5?) in their ranges.

0200

10 + average °©

—_ 9e-10n"6 -
L. 4L 9e-10n"5.5 e
S 9e-10n"5
S ol
g
8 0.01 +
12}
=
© 0001
kS
o 0.0001 ¢
E o

1e-05 ¢ ’

n for n-transposition graph

Figure 4: Time of paths construction.

5 Conclusions

In this paper, we proposed a polynomial algo-
rithm for the node-to-set disjoint paths prob-
lem in n-transposition graphs whose time
complexity and the maximum length of each
path are O(n") and 3n — 5, respectively. We
also conducted the computer experiment to
show the average length of each path being
O(n) and the average time being O(n>?).

Acknowledgement

This work was partly supported by Grant-in-Aid
for Scientific Research (C) of JSPS under Grant
No. 16500015 and Grant-in-Aid for JSPS Fellows.

References

[1] S.B. Akers et al., “A group-theoretic model
for symmetric interconnection networks,”
IEEE Trans. Comp., 38(4):555-566, 1989.

[2] P.F. Corbett, “Rotator graphs: An effi-
cient topology for point-to-point multipro-
cessor networks,” IEEE Trans. Parallel &
Distributed Syst., 3(5):622-626, 1992.

B8] Q. Gu et al, “Node-to-set disjoint paths
problem in star graphs,” Inf. Proc. Lett.,
62(4):201-207, 1997.

[4] K. Kaneko et al., “Node-to-set disjoint paths
problem in pancake graphs,” IEICE Trans.
Inf. & Syst., E86-D(9):1628-1633, 2003.

[5] S. Latifi et al., “Transposition networks as

a class of fault-tolerant robust networks,”
IEEE Trans. Comp., 45(3):230-238, 1996.

[6] M.O. Rabin, “Efficient dispersal of informa-
tion for security, load balancing, and fault
tolerance,” JACM, 36(2):335-348, 1989.

事務局
－20－

