
Vol. 41 No. 6 情報処理学会論文誌 June 2000

並列Modified PrefixSpan法における動的負荷分散手法

高 木 允† 田 村 慶 一††

周 藤 俊 秀† 北 上 始††

モチーフはアミノ酸配列中に存在する特徴的なパターンであり，生物学的に意味があると考えられ
ている．アミノ酸配列中のモチーフを効率的に発見するために，高速な頻出パターン抽出アルゴリズ
ムが求められている．本稿では，PC クラスタ上でアミノ酸配列から頻出パターンを並列に抽出する
並列Modified PrefixSpan法の動的負荷分散手法を示す．並列Modified PrefixSpan法は PCクラ
スタ間でタスクを分配する手法を用いている．我々は，並列 Modified PrefixSpan 法の動的負荷分
散手法としてマスタ・タスク・スティル法を示す．マスタ・タスク・スティル法は PC クラスタ上で
各 PC の負荷が偏っている場合，負荷が少ない PC の空き時間を最小限にする手法である．

Dynamic Load Balancing for Parallel Modified PrefixSpan

Makoto Takaki,† Keiichi Tamura ,†† Toshihide Sutou†
and Hajime Kitakami††

Motif is featured pattern which is biologically meaningful in amino acid sequences. Motif is
discovered from frequent patterns. In order to extract the frequent patterns that can become
motifs in amino acid sequences at high-speed, a parallel Modified PrefixSpan is proposed.
This paper presents a dynamic load balancing for the parallel Modified PrefixSpan to ex-
tract frequent patterns at high-speed from the amino acid sequences on a PC cluster. The
parallel Modified PrefixSpan exploits a task-based parallelism that distributes tasks among
the computers on the PC cluster. We present a dynamic load balancing methodology called
master-task-steal. The master-task-steal-based dynamic load balancing minimizes idle time
when the distributed workload is unbalanced on the PC cluster.

1. Introduction

Motifs in biologically are assumed to be related to

a function of proteins that have been preserved in

the evolutionary process of an organism. The Motif

is discovered from frequent patterns in amino acid

sequences.

In order to discover the motifs efficiently, a Mod-

ified PrefixSpan (called MPS)6) with a rich func-

tional frequent pattern extraction algorithm is pro-

posed. The MPS can extract the frequent patterns

including fixed-length wildcard regions and existing

in different positions in amino acid sequences.

† 広島市立大学大学院情報科学研究科
Graduate School of Information Sciences, Hiroshima

City University

†† 広島市立大学情報科学部
Faculty of Information Sciences, Hiroshima City

Unievrsity

We have been developing a parallel Modified Pre-

fixSpan (called PMPS)10) to extract the frequent

patterns at high-speed on a PC cluster. The PMPS

exploits a task-based parallelism which distributes

tasks among the computers on the PC cluster (a

computer on the PC cluster is called a site) and

master-worker parallelism.

This paper presents a dynamic load balancing

for the PMPS. The characteristic of the dynamic

load balancing for the PMPS is a master-task-steal

(MTS) methodology. The MTS-based dynamic

load balancing is a method of declustering tasks

from some working sites to sites that have finished

all task. The MTS methodology minimizes idle

time when the distributed workload is unbalanced

on the PC cluster.

We evaluated the PMPS with the MTS-based dy-

namic load balancing on an actual PC cluster. In

the experiments, two types of data sets that in-

1234

事務局 
 

事務局 
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

事務局 
2004－MPS－50　(3)

事務局 
2004／6／22

事務局 
－9－

事務局 
 



Vol. 41 No. 6 並列 Modified PrefixSpan 法における動的負荷分散手法 1235

clude motifs named Zinc Finger and Kringle were

used. The speedup of the PMPS with the MTS-

based dynamic load balancing is superior to that of

the previous implementation of the PMPS.

The rest of the paper is organized as follows: Sec-

tion 2 discusses related work. Section 3 explains the

MPS. Section 4 describes the PMPS and the MTS-

based dynamic load balancing technique. Section

5 shows the experiment results. Section 6 is the

conclusions.

2. Related Work

There are many studies on frequent pattern ex-

traction in sequence databases. Most of these stud-

ies adopt, an apriori like3), a candidate generation-

and-test approach. The apriori like approach may

still be expensive, especially when long and numer-

ous patterns are encountered. In order to extract

frequent patterns, a new methodology, called fre-

quent pattern growth (FP-Growth), was developed

by Jiawei Han and Jian Pei5). In this approach,

a divide-and-conquer philosophy is used to project

and partition databases based on the currently dis-

covered frequent patterns and grow such patterns

into longer ones in the projected databases. This

approach mines the frequent patterns without can-

didate generation.

The proposed apriori like or FP-Growth frequent

pattern extraction algorithms focus on business

field data, such as market basket data9), episode

data4), and network log data. These algorithms

are not adapted to bioinformatics field data. The

MPS is proposed to extract frequent patterns in

amino acid sequences. The MPS is an extension of

the PrefixSpan7), which is based on the FP-Growth

approach. The key idea of the MPS is to examine

only prefix subsequences and to project only their

corresponding postfix subsequences into projected

databases.

To the best of our knowledge, there is no study on

the parallel processing of FP-Growth frequent pat-

tern extraction algorithms. There are many studies

on the parallel processing of the apriori like ap-

proach2)8)11). However, these parallelisms are not

adapted to the FP-Growth approach. The main

cost of the apriori like approach is candidate gener-

ation and scanning sequence databases. The main

cost of the FP-Growth approach is the construc-

tion of frequent patterns from postfix databases and

the generation of the projected database of frequent

patterns.

3. Modified PrefixSpan

3.1 Problem Definition

In this section, we first define the problem of fre-

quent pattern extraction in the protein sequences.

Let Σ = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q,

R, S, T, V, W, Y } be a set of all letter alphabet

in the amino acid sequences. Sequence s is denoted

as (a1a2 · · · am), where aj is a letter, i.e., aj ∈ Σ,

aj = s[j], for 1 ≤ j ≤ m. Sequence database S is a

set of tuples 〈sid, ssid〉, where sid is a sequence id

and ssid is a sequence.

A k-length pattern is denoted as patk = 〈A1 −
x(i1) − A2 − x(i2) − · · · − x(ik−1) − Ak〉. Sym-

bol Aj is called a character element. Symbol (−)

means that the next element is continued. Sym-

bol x(in) represents fixed-length wildcard regions

(where 0 ≤ in ≤ max wc, the maxium length of

a fixed-length wildcard region in the frequent pat-

terns is denoted as max wc).

The support of the k-length pattern patk in S is

the number of tuples in S containing patk. Given

a positive integer, min sup as the support thresh-

old, the k-length pattern is called a k-frequent (se-

quential) pattern if patk is contained by at least

min sup tuples. The k-frequent pattern patk is rep-

resented as “patk : cnt”, if the support of patk is

cnt. Supposing that there are n k-frequent pat-

terns extracted from S, these are denoted as Pk =

{ 〈patk
1〉 : cnt1,〈patk

2〉 : cnt2, · · ·, 〈patk
n〉 : cntn }.

Each patk has a projected database that keeps

next positions of the rightmost characters of patk.

It is denoted as PDB(patk) = {(sid, pos)| pos is

the next position of the rightmost character of patk,

where 1 ≤ pos ≤‖ ssid ‖ }.
3.2 MPS Algorithm

Fig.1 shows the algorithm of MPS.

• phase 1:

The algorithm scans the sequence database

S once to find all 1-frequent patterns in the

sequences. Each 1-frequent pattern has a

事務局 
 

事務局 
－10－



1236 情報処理学会論文誌 June 2000

MPS(min sup,max wc)

PDBLIST :=φ ;

/* PDBLIST is a set of projected database */

create P1 and PDBLIST by scanning S;

while (PDBLIST 6= φ )

NEXT_PDBLIST:=φ ;

for all PDB(patk) ∈ PDBLIST

/* k is positive integer */

NEXT_PDBLIST :=

NEXT_PDBLIST∪ BMPS(min_sup,max_wc,PDB(patk));

end_for;

swap(PDBLIST,NEXT_PDBLIST);

end_while;

end;

subroutine BMPS(min sup,max wc,PDB(patk))

TMP_PDBLIST :=φ ; NEW_PDBLIST :=φ ;

for w = 0 to max_wc

for all (i,j) ∈ PDB(patk)

patk+1 :=

patk c©-x(w)- c©si[j+w];

/* c© means concatenation*/

if PDB(patk+1) 3 TMP_PDBLIST then

/*3 means not inclusion*/

TMP_PDBLIST:=TMP_PDBLIST∪PDB(patk+1);

end_if;

PDB(patk+1) :=

PDB(patk+1)∪(i,j+w+1);
end_for;

end_for;

for all PDB(patk+1) ∈ TMP_PDBLIST

if support(PDB(patk+1)) ≥ min_sup then

NEW_PDBLIST:=NEW_PDBLIST∪PDB(patk+1);

Pk+1 := Pk+1∪ <patk+1>:support(PDB(patk+1));

end_if;

end_for;

return NEW_PDBLIST;

end;

Fig.1 MPS Algorithm

Table 1 Example of Amino Acid Sequences

sequence id sequence

1 MFKALRTIPVILNMNKDSKLCPN

2 MSPNPTNHTGKTLR

PDB(pat1). In addition, the PDB(pat1) is in-

serted into PDBLIST .

• phase 2:

For each PDB(patk) (where k ≥ 1) in the

PDBLIST , the algorithm constructs (k + 1)-

length patterns based on PDB(patk). If the

support of a (k+1)-length pattern is more than

min sup, the (k+1)-length pattern is a (k+1)-

frequent pattern. Each (k + 1)-frequent pat-

tern has a PDB(patk+1). If no (k+1)-frequent

pattern is extracted, the algorithm terminates

the frequent pattern extraction. Otherwise,

k := k + 1 and go to “phase2”;

3.3 Example

Let our running database be a sequence database

S given in Table 1. Each parameter is as follows:

<M>:2<M>:2

<><>

<K>:2<K>:2 <L>:2<L>:2 <R>:2<R>:2 <T>:2<T>:2 <P>:2<P>:2 <N>:2<N>:2 <S>:2<S>:2

min_sup=2, max_wc=1

PDB(<K>) = {(1,4),(1,17),(1,20),(2,12)}
(1) wildcard=0

<K-x(0)-L>:1
<K-x(0)-T>:1

PDB(<K>) = {(1,4),(1,17),(1,20),(2,12)}
(1) wildcard=0

<K-x(0)-L>:1
<K-x(0)-T>:1

MFKALRTIPVILNMNKDSKLCPN
MSPNPTNHTGKTLR

<K-x(1)-L>:2<K-x(1)-L>:2

(2) wildcard=1
<K-x(1)-L>:2
<K-x(1)-S>:1

PDB(<K-x(1)-L>) = {(1,6),(2,14)}
(1) wildcard=0

<K-x(1)-L-x(0)-R>:2

PDB(<K-x(1)-L>) = {(1,6),(2,14)}
(1) wildcard=0

<K-x(1)-L-x(0)-R>:2 MFKALRTIPVILNMNKDSKLCPN
MSPNPTNHTGKTLR

(2) wildcard=1
<K-x(1)-L-x(1)-T>:1

<K-x(1)-L-x(0)-R>:2<K-x(1)-L-x(0)-R>:2

empty

Fig.2 Example of Pattern Growth Steps in the MPS

min sup = 2, max wc = 1. The 1-frequent pat-

terns are like P1={〈M〉 : 2, 〈K〉 : 2, 〈L〉 : 2, 〈R〉 :

2, 〈T 〉 : 2, 〈P 〉 : 2, 〈N〉 : 2, 〈S〉 : 2}. In Fig.2,

the projected database of 1-frequent pattern {〈K〉 :

2} is represented by PDB(〈K〉) ={(1,4), (1,17),

(1,20), (2,12)}. First, letters s1[20 + 0] = 〈L〉 and

s2[12 + 0] = 〈T 〉 are appended to 〈K − x(0)−〉 if

the number of wildcards is 0. The 2-length patterns

{〈K − x(0)− L〉 : 1, 〈K − x(0)− T 〉 : 1} are not 2-

frequent patterns. Next, if the number of wildcards

is 1, letters s1[4 + 1] = 〈L〉, s1[17 + 1] = 〈S〉, and

s2[12+1] = 〈L〉 are appended to 〈K−x(1)−〉. Pat-

tern 〈K−x(1)−L〉 is a 2-frequent pattern because

the support of 〈K−x(1)−L〉 is more than min sup.

The 3-frequent pattern 〈K − x(1)− L− x(0)− R〉
is extracted in the same way.

4. PMPS with MTS-based Dynamic
Load Balancing

4.1 Master-Worker Parallelism

The PMPS (parallel Modified PrefixSpan) is

based on the master-worker parallelism. There are

two types of processes in the PMPS: the master

process and the worker process. The master and

worker processes work as follows.

Master Process:

(1) First of all, the master process extracts 1-

frequent patterns to s-frequent patterns where

s is a user-specified threshold. The process,

which extracts all k-frequent patterns (where

事務局 
 

事務局 
－11－



Vol. 41 No. 6 並列 Modified PrefixSpan 法における動的負荷分散手法 1237

task1

task2

task3
task4

t

Worker Process 1 Worker Process 2 Worker Process 3 Worker Process 4

task5

task6

0

Idle Time Idle TimeIdle Time

End Time of Execution

task8

<M:2><M:2>

<><>

<K:2><K:2> <L:2><L:2> <R:2><R:2> <T:2><T:2> <P:2><P:2> <N:2><N:2> <S:2><S:2>

min_sup=2, max_wc=1

<K-x(1)-L:2><K-x(1)-L:2>

<L-x(0)-R:2><L-x(0)-R:2>

<K-x(1)-L-x(0)-R:2><K-x(1)-L-x(0)-R:2>
<P-x(0)-N:2><P-x(0)-N:2>

task1

task2 task3

task4 task5

task6

task7 task8

Threshold=1

Master Process

task7

Fig.3 Example of Parallel Pattern Growth Steps in the

PMPS

k > s) from an s-frequent pattern, is called a

task. Each task is inserted into a global task

pool.

(2) The master process sends a task to a worker

process when the mater process receives the

global task request from the worker process.

(3) If the global task pool is not empty, the master

process returns to process (2). Otherwise, the

master process sends a termination signal to all

worker processes and terminates processing.

Worker Process:

(1) The worker process sends a global task request

to the master process.

(2) If the worker process receives a task from the

master process, the worker process extracts all

k-frequent patterns (where k > s) from an s-

frequent pattern and returns to process (1). If

the worker process receives the termination sig-

nal, the worker process sends all results to the

master process and terminates processing.

4.2 Dynamic Load Balancing

4.2.1 Master-Task-Steal Methodology

The execution time becomes increasingly unbal-

anced when the workload of an assigned task at

each worker process is very unbalanced. A worker

process with extremely big tasks has to continue

the processing of tasks with one process though

other worker processes have finished the processing

of tasks.

For example, as shown in Fig.3, the master

process generates eight tasks (where threshold=1).

Master Process

Worker Process 1 Worker Process 2 Worker Process 3 Worker Process 4

global task pool

local task pool

global task 
request

steal request

local task

Fig.4 Conceptual Figure of Master-Task-Steal

Methodology

Each task is assigned to each site. Finally, each

worker process that has finished the processing of

tasks, namely, worker process1, worker process2,

and worker process3 waits for worker process4. This

wait generating idle time in each worker process.

Therefore, an effective speedup ratio cannot be

achieved.

The task scheduling algorithms are not adapted

to the PMPS. The processing of the task can be

done independently. However, it is impossible to

estimate the cost of the task because the cost of

the task depends on the feature of amino acid se-

quences.

To overcome this performance limitation on the

PMPS, a master-task-steal (MTS)-based dynamic

load balancing technique is presented. A key idea of

the MTS-based dynamic load balancing is that the

balance of the workload on all sites is kept by on-

demand declustering distributed tasks. In the MTS

methodology, the master process gathers all tasks

located in each worker process if the global task pool

is empty when the master process receives a global

task request.

In Fig.3, worker process1 is the first to finish pro-

cessing the task. Worker process1 sends a global

task request to the master process. However, the

global task pool is empty, and there are no tasks to

distribute. In the MTS approach, master process

sends a steal request to all the worker processes. In

Fig.4, the worker process, which has received the

steal request, sends all tasks located in the local task

事務局 
 

事務局 
－12－



1238 情報処理学会論文誌 June 2000

pool to the global task pool. There are seven gath-

ered tasks in this case. One of these tasks is then

assigned to worker process 1.

4.2.2 Master-Task-Steal Algorithm

This section describes an algorithm of MTS-

based dynamic load balancing. The processes

shown in Section 4.1 are changed as described in

the follows.

The worker process extracts from (s+1)-frequent

patterns to (s + s′ + 1)-frequent patterns where s′

is a user-specified threshold. The process that ex-

tracts all k-frequent patterns (where k > (s+s′+1))

from an (s+s′+1)-frequent pattern is called a local

task.

Each worker process has its own local task pool

which can store the tasks. Each local task is in-

serted into the local task pool. The worker process

pops a local task from the local task pool and ex-

ecutes the local task. The worker process sends a

global task request to the master process if the local

task pool is empty.

The master process sends a steal request as a

broadcast message to all worker process if the global

task pool is empty. The worker process sends the

local tasks to the master process when the worker

process receives the steal request from the master

process. The master process inserts all received lo-

cal tasks into the global task pool. Then the master

process re-distributes them to the worker processes.

5. Performance Evaluation

We implemented the PMPS with the MTS-based

dynamic load balancing on an actual PC cluster.

There are 16 personal computers, each configured

with a 2.53GHz Pentium4 processor, 1.5GB mem-

ory, and 80GB disk. The personal computers were

connected to a 100 Mbit/sec Ethernet. RedHat9.0

was used as the operating system. MPICH version

1.2.5 was used as the MPI library, and GNU g++

ver.3.2.2 was used as the C++ compiler.

The data sets used in this evaluation were pro-

vided by PROSITE1). The data set which includes

motif named Kringle has 70 data records (total-

length: 23,385 bytes; average-length: 334 bytes;

maximum-length: 3176 bytes; and minimum-

length: 53bytes). The data set which includes mo-

tif named Zinc Finger has 467 data records (total-

length: 245,595 bytes; average-length: 525 bytes;

maximum-length: 4036 bytes; and minimum-

length: 34bytes).

For this experiment, each parameter was as fol-

lows: Kringle; min sup=14 (20%); max wc=5.

Zinc Finger; min sup=140 (30%); max wc=5.

First, we use dataset including kringle. Fig.5

shows the speedup ratios of the previous imple-

mentation of the PMPS and Fig.6 shows the

speedup ratios of the PMPS with the MTS-based

dynamic load balancing. The threshold is de-

noted as Threshold(s, s′), where s and s′ is a

user-specified threshold of the master process and

threshold of the worker processes. Fig.5 shows that

enlarging the threshold of the master process in-

creases the speedup ratio to the ideal. It is because

the grain of the task became fine and the workload

of each worker process became uniform. When the

threshold of the master process is 5, the speedup

ratio is lower than when it is 4. The serial pro-

cessing in the master process becomes the bottle-

neck. As shown in Fig.6, when the thresholds were

Threshold(1, 1), the speedup ratio was lower than

the other speedups because the grain of the tasks

was not fine enough. If the grain of the tasks is

rough, the tasks for redistribution decrease. Oth-

erwise, the speedup ratio obtained was 15 times

higher than that obtained using just one processor.

Fig.7 shows the execution time of each worker

process without MTS-dynamic load balancing

when 16 machines are used (Threshold(1, 0)). The

entire execution time depends on worker process 2.

The idle time is generated in other worker pro-

cesses. Fig.8 shows the execution time of each

worker process with MTS-dynamic load balancing

when 16 machines are used (Threshold(1, 3)). The

execution time of each worker process is almost

equal, and the uniformity of workloads can be con-

firmed.

Fig.9 shows the communication frequency and

amount of communication. When MTS-basd dy-

namic load balancing is integrated the maximum

total amount of communication is about 1.8Mbytes.

Such communication hardly influences the execu-

tion time.

事務局 
 

事務局 
－13－



Vol. 41 No. 6 並列 Modified PrefixSpan 法における動的負荷分散手法 1239

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Machines

S
p

e
e

d
u

p
 R

a
tio

Ideal
Threshold (1,0)
Threshold (2,0)
Threshold (3,0)
Threshold (4,0)
Threshold (5,0)

Fig.5 Speedup without MTS-Based Dynamic Load

Balancing (Kringle)

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Machines

S
p

e
e

d
u

p
 R

a
tio

Ideal
Threshold (1,1)
Threshold (1,2)
Threshold (1,3)
Threshold (1,4)

Fig.6 Speedup with MTS-Based Dynamic Load

Balancing (Kringle)

Fig.10 and Fig.11 show the speedup ratios us-

ing the dataset including Zinc Finger. In Fig.11,

the speedup ratio was greater than the number of

machines. This is because processing was slower

when using one machine due to a memory short-

age. Effective speedup can also be obtained, as it

was in the case of using Kringle.

6. Conclusions

This paper presents the MTS-based dynamic load

balancing for the PMPS. The speedup of the PMPS

with the MTS-based dynamic load balancing is

higher than that of a previous implementation. The

experimental results show that the MTS-based dy-

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Worker ID

E
xe

cu
tio

n
 T

im
e

 (
se

c)

Execution Time

Average Execution Time

Fig.7 Execution Time of Each Worker Process without

MTS-Based Dynamic Load Balancing (Kringle)

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Worker ID

E
xe

cu
tio

n
 T

im
e

 (
se

c)

Execution Time

Average Execution Time

Fig.8 Execution Time of Each Worker Process with

MTS-Based Dynamic Load Balancing (Kringle)

namic load balancing minimizes idle time when dis-

tributed workload is unbalanced on the PC clusters.

In the future, it will be necessary to verify the

results by using a variety of amino acid sequences.

Acknowledgments This work was supported

in part by a Hiroshima City University Grant

for Special Academic Research (General Studies,

No.3106).

References

1) http://kr.expasy.org/prosite/.

2) R. Agrawal and J. C. Shafer. Parallel mining

of association rules. IEEE Trans. Knowl. Data

Eng., 8(6):962–969, 1996.

事務局 
 

事務局 
－14－



1240 情報処理学会論文誌 June 2000

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Machines

C
o

m
m

u
n

ic
a

tio
n

 F
re

q
u

e
n

cy

0

200

400

600

800

1000

1200

1400

1600

1800

2000

A
m

o
u

n
t 

o
f 

C
o

m
m

u
n

ic
a

tio
n

(K
b

yt
e

)

Communicatio Frequency(without MTS)
Communicatio Frequency(with MTS)
Amount of Communication(without MTS)
Amount of Communication(with MTS)

Fig.9 Communication Frequency and Amount of

Communication (Kringle)

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Machines

S
p

e
e

d
u

p
 R

a
tio

Ideal
Threshold (1,0)
Threshold (2,0)
Threshold (3,0)
Threshold (4,0)

Fig.10 Speedup without MTS-based Dynamic Load

Balancing (Zinc Finger)

3) R. Agrawal and R. Srikant. Mining sequen-

tial patterns. In Proceedings of the Eleventh

International Conference on Data Engineering,

pages 3–14. IEEE Computer Society, 1995.

4) C. Bettini, X. S. Wang, S. Jajodia, and J.-L.

Lin. Discovering frequent event patterns with

multiple granularities in time sequences. IEEE

Trans. Knowl. Data Eng., 10(2):222–237, 1998.

5) J.Han, J.Pei, and Y.Yin. Mining frequent pat-

terns without candidate generation. In Proceed-

ings of the 2000 ACM SIGMOD International

Conference on Management of Data, pages 1–

12. ACM, 2000.

6) H. Kitakami, T. Kanbara, Y. Mori, S. Kuroki,

and Y. Yamazaki. Modified prefixspan method

for motif discovery in sequence databases. In

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Machines

S
p
e
e
d
u
p
 R

a
tio

Ideal
Threshold (1,1)
Threshold (1,2)
Threshold (1,3)
Threshold (1,4)

Fig.11 Speedup with MTS-based Dynamic Load

Balancing (Zinc Finger)

PRICAI2002, Proceedings of Trends in Artifi-

cial Intelligence, 7th Pacific Rim International

Conference on Artificial Intelligence, volume

2417 of Lecture Notes in Computer Science,

pages 482–491. Springer, 2002.

7) J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto,

Q. Chen, U. Dayal, and M. Hsu. Prefixspan:

Mining sequential patterns by prefix-projected

growth. In Proceedings of the 17th Interna-

tional Conference on Data Engineering, pages

215–224. IEEE Computer Society, 2001.

8) T. Shintani and M. Kitsuregawa. Parallel

mining algorithms for generalized association

rules with classification hierarchy. In SIG-

MOD 1998, Proceedings ACM SIGMOD Inter-

national Conference on Management of Data,

pages 25–36. ACM Press, 1998.

9) R.Srikant and R.Agrawal. Mining generalized

association rules. In Proceedings of 21th Inter-

national Conference on Very Large Data Bases,

pages 407–419. Morgan Kaufmann, 1995.

10) T.Sutou, K.Tamura, Y.Mori, and H.Kitakami.

Design and implementation of parallel modified

prefixspan method. In High Performance Com-

puting, Proceedings of 5th International Sym-

posium,ISHPC, volume 2858 of Lecture Notes

in Computer Science, pages 412–422. Springer,

2003.

11) M.Tamura and M.Kitsuregawa. Dynamic load

balancing for parallel association rule mining

on heterogenous pc cluster systems. In Pro-

ceedings of 25th International Conference on

Very Large Data Bases, pages 162–173. Mor-

gan Kaufmann, 1999.

事務局 
 

事務局 
－15－




