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This paper proposes a novel approach to discover dynamic models represented by simulta-
neous time differential law equations including hidden states from time series data measured
in an objective process. This task has not been addressed in the past work though it is essen-
tially important in scientific discovery since any behaviors of the objective processes emerge
in time evolution. The promising performance of the proposed approach is demonstrated
through the analysis of synthetic data.

1. Introduction

A set of well known pioneering approaches
of scientific law equation discovery is called
BACON family1)∼4). They try to figure out
a static equation on multiple quantities over
a wide state range under a given laboratory
experiment. More recent systems introduced
unit dimension constraints and “scale–type con-
straints” to limit the search space to mathemat-
ically admissible equations reflecting the first
principles3),5). Especially, the scale–type con-
straints have wider applicability since it does
not require any unit information of quantities.
Subsequently, LAGRANGE addressed the dis-
covery of “simultaneous time differential law
equations” reflecting the dynamics of an ob-
jective processes under “passive observations”
where none of quantities are experimentally
controllable6). However, the discovery of “hid-
den state variables” in the objective processes
has never been addressed in past work.

In this paper, we propose a novel approach
named SCALETRACK (Scale–type and state
TRACKing based discovery system) to discover
a model of an objective process having the fol-
lowing features.
(1) The model is a simultaneous time differ-

ential equations representing the dynamic
behavior of an objective process.

(2) The model is not an asymptotic approxi-
mated model but a model representing the
first principles governing the objective pro-
cess.

(3) The model can discover hidden state vari-
ables and their governing differential equa-
tions.

(4) The model is discovered without using
background domain knowledge specific to
the objective process.

(5) The model is discovered from passively ob-
served data.

In the rest of this paper, the basic problem set-
ting and the entire approach of SCALETRACK
are outlined in Section 2, and the performance
evaluations are shown in Section 3.

2. Outline

2.1 Basic Problem Setting
We adopt the following “state space expres-

sion” to model an objective processes and mea-
surements without loss of generality.{

ẋ(t) = f(x(t)) + v(t),
y(t) = Cx(t) + w(t), (1)

(v(t) ∼ N(0, Σv),w(t) ∼ N(0,Σw)),
where the first equation is called a “state equa-
tion” and the second a “measurement equa-
tion.” x is called a “state vector”, f(x) a “state
function”, v a “process noise vector”, y a “mea-
surement vector”, C a “measurement matrix”,
w a “measurement noise” and t a “time index”.
f(x) is nonlinear in general, and any state tran-
sition of x can be represented by this formula-
tion. While C is a linear transformation rep-
resenting measurement facilities to derive the
measurement variables in y from the state vari-
ables in x, the facilities are artificial and linear
in most cases. Thus, this does not reduce the
generality of this expression. If C is a unit ma-
trix, all state variables are directly observable
through the measurement. If C is column full
rank, the value of all state variables with the
measurement noise can be estimated by solv-
ing the measurement equation with x. Other-
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wise, some state variables cannot be estimated
by the measurement equation only. Such state
variables are called “hidden state variables.”

In practical setting of discovery, f(x) and
some elements of x are initially unknown. We
can know only subvector x′(⊆ x) measured
by artificial measurement facilities. Thus only
a submatrix C ′(⊆ C) representing a relation
between x′ and y is initially known. So our
proposing method should identify the correct
dimension of x including hidden state variables
based on given measurement data at first. Sub-
sequently, it searches plausible candidates of
f(x) reflecting the first principles.

2.2 Outline of Approach
The outline of our proposing method is shown

in Fig. 1. Given a set of measurement data and
knowledge on scale–types of measurement vari-
ables, the dimension of x is identified through
a statistical analysis called “correlation dimen-
sion analysis.”7) For each element of y, the
locus of its temporal change is mapped to a
phase space constructed by time-delayed val-
ues of the element, and the degree of freedom
which is dimension of x is estimated by calcu-
lating the sparseness of the locus in the phase
space. Once the dimension of x is known, all
possible combinations of scale–types of the el-
ements in x are enumerated based on scale–
type constraints from the known measurement
submatrix C ′ and the scale–types of the ele-
ments in y. Then for all combination, the ad-
missible candidate equations of f(x) are gen-
erated. Subsequently, the validity of the candi-
date is tested through a simulation based track-
ing method called “Sequential Importance Sam-
pling/Resampling Monte Carlo filter(SIS/RMC
filter)”8) on the given measurement data. Sim-
ulation based tracking is repeated for each can-
didate to optimize the coefficients in the candi-
date equations. Then, the combination of can-
didate f and its coefficients providing highly ac-
curate tracking, in terms of “mean square error
(MSE)”, is selected as the discovered dynamic
model of the objective process. Through these
steps, SCALETRACK discovers the first prin-
ciple based state space model of the objective
process from passively observed data without
detailed domain knowledge except for scale–
types and measurement facilities.

3. Performance Evaluation

3.1 Basic Performance
The evaluation is made in terms of scale–

Fig. 1 Block Diagram of Approach.

types of state variables, hidden state variables
and measurement noise levels by using two di-
mensional artificial formulae named RR and RI.
Their equations are the followings.
1. Model RR:

ẋ1(t) = x1(t)x2(t),

ẋ2(t) = −0.5x2(t),(
y1(t)

y2(t)

)
=

[
1 0

0 1

](
x1(t)

x2(t)

)
+wt,

where y1(t) = x1(t) and y2(t) = x2(t)
are Ratio scale. The measurement data
were generated by the simulations under
one time step ∆t = 0.005 and total steps
n = 600.

2. Model RI:
ẋ1(t) = 0.4x1(t)(x2(t) + 0.2),

ẋ2(t) = −0.1(x2(t) + 0.6),(
y1(t)

y2(t)

)
=

[
1 0

0 1

](
x1(t)

x2(t)

)
+wt,

where y1(t) = x1(t) is Ratio scale and
y2(t) = x2(t) Interval scale. The measure-
ment data were generated by the simula-
tions under one time step ∆t = 0.05 and
total steps n = 600.

The elements of measurement noise wt are de-
termined as follows.

wh
t ∼ N

(
0, σwxh(t)

)
,

where wh
t is the h–th element of wt, xh(t) the

h–th element of x(t), and σw a relative ampli-
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Table 1 Basic Performance

case ct σw(%)

(hrs.) 0.1 0.5 1.0 2.0 5.0∼
RR 1.5 ++ + + + -

RRH 5.5 + + - - -

RI 4.0 ++ + + + -

RIH 5.5 ++ + - - -

Fig. 2 An LC and FET Circuit

tude of measurement noise. The second mea-
surement variable, y2, is not available in RRH
and RIH, and hence a hidden state variable ex-
ists. On the other hand, all state variables are
observed in RR and RI. The correlation dimen-
sion analysis properly estimated the dimension
of state vectors as nearly 2 in each case. The
computation times ct required for RRH, RI and
RIH were far longer than that of RR, because
the variety of admissible formulae containing
interval scale variables is far larger than that of
ratio scale variables. The result in that the for-
mula having the correct shape is top ranked by
the accuracy is marked by ++. If the correct
formula is derived within the top five solutions,
it is marked by +, otherwise it is marked by -.
The table shows that almost σw = 2.0% relative
noise is acceptable for no hidden state cases,
while noise less than 0.1− 0.5% is required for
hidden state cases.

3.2 Discovery of Circuit Dynamics
SCALETRACK has been applied to syn-

thetic data of an electric circuit consisting of
LC and Field Effect Transistor (FET) as shown
in Fig. 2. Its state equation is represented as
follows.

V̇I(t) = −I(t)
C1

= −100I(t),

İ(t) =
VI(t)

L
= 50VI(t),

V̇F (t) =
VI(t)VF (t)

rC2
= 250.0VI(t)VF (t),

where the definitions of VI , I, VF , L = 20mH,
C1 = 10mF and C2 = 1mF are clear in the
figure and r = 4.0ΩV a voltage–resistance co-
efficient of FET. All state variables are Ratio
scale, and can be measured via corresponding
Ratio scale measurement variables respectively.
The measurement data were sampled under one
time step ∆t = 0.001, total time steps n = 800
and the relative measurement noise σw = 0.1%.
Because the dimension of the state vector, 2.94,
was obtained in correlation dimension analysis,
the state equation consisting of three state vari-
ables was searched.

In case that every state variables are directly
measured, the following state equation having
the best accuracy was derived.

V̇I(t) = −133.3I(t),
İ(t) = 6.94VI(t)VF (t),

V̇F (t) = 249.0VI(t)VF (t).
The shapes of the first and the third expres-
sions of the equation are identical with those in
the original equation though the values of coef-
ficients are slightly different from the original.

Subsequently, the measurement of I was
omitted to make I a hidden state variable. The
following correct formula except for the discrep-
ancy of coefficient values showed up within the
solutions having top five accuracies.

V̇I(t) = −26.9I(t),
İ(t) = 298.0VI(t),

V̇F (t) = 250.0VI(t)VF (t).
These results indicate that SCALETRACK has
ability to discover state equations of engineer-
ing objects having three-dimensional dynamics
at least.

4. Discussion

In this paper, we proposed a method named
SCALETRACK which discovers the first prin-
ciple based dynamic models of an objective
process represented by simultaneous time dif-
ferential equations. According to the experi-
ments, SCALETRACK has an ability to dis-
cover state equations even if hidden states exist.
SCALETRACK accepts at least 2.0% measure-
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ment noise in relative amplitude when hidden
states do not exist. This is comparable with
the noise level in practical cases where 1.0–2.0%
measurement noise is the most widely seen in
scientific and engineering applications. Even
when a hidden state exists, 0.5% measurement
noise in relative amplitude can be accepted by
SCALETRACK. This noise level can also be
achieved by using proper measurement facili-
ties in many applications. The performance of
SCALETRACK shows robustness against mea-
surement noise to some extent.

Computational complexity of SCALETRA-
CK is NP–hard in terms of the number of
state variables, because the number of possi-
ble combinations of scale–types, the number
of candidate state equations and the number
of the possible values of the coefficients to be
searched show combinational explosions when
the number of state variables increase. This
fact is reflected to the computation time re-
quired by SCALETRACK, where it took over
3 days to complete the search of the solutions
having three state variables of Ratio scales. Al-
though the computational time can be reduced
by more limiting the search of the coefficients,
the correctness of the solutions is also reduced.
More efficient search algorithm should be stud-
ied in future work.

Another issue remained in this work is the
noise robustness. This problem is also very
important to establish wilder applicability of
SCALETRACK to noisy situations. Some ap-
proaches to reduce the noise effect should be
introduced to the estimation of the probability
distribution of the states in the SIS/RMC filter
in future study.

The advantage of SCALETRACK is that the
equations discovered by the SCALETRACK
are guaranteed that they are the first principle
based equations because the candidates gener-
ated in SCALETRACK are constrained by the
scale–types of variables and Extended Product
Theorem. Scientists can easily avoid the solu-
tions not reflecting the underlying first princi-
ples by using this method.

5. Conclusion

We showed a novel method to discover a si-
multaneous time differential equations repre-
senting the first principles governing dynamic
behavior of an objective process from passively
observed data. The significant features of this
approach are the discovery without strong bias

of the domain knowledge due to no use of
knowledge specific to the objective process and
the wide applicability to the cases including
hidden state variables in the objective process.
The remained major issue is to overcome the
computational time complexity of the search.
Under the current environment, the derivation
of models consisting of more than a few dif-
ferential equations are not very practical. The
study to significantly increase the search speed
is currently underway.
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