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Abstract In our previous work[5], it has been shown that simple deterministic languages are polynomial
time learnable from random examples and membership queries, if the size of the target grammar and the
minimum occurring probability of rules are given. Here, random examples are drawn along an arbitrary

distribution. However, giving the minimum occurring probability inhibits independence of the distribution

from the learner. In this paper, we consider a condition of the distribution and show the learnability

without the minimum occurring probability.

1 Introduction

In our previous work[5], it has been shown that
simple deterministic languages are polynomial
time learnable from random examples and mem-
bership queries, if the size of the target gram-
mar and the minimum occurring probability of
rules are given. Here, a hypothesis is in a sim-
ple deterministic grammar and random examples
are drawn along an arbitrary distribution. How-
ever, giving the minimum occurring probability
inhibits independence of the distribution from the
learner and the target language. In this paper, we
consider a condition of the distribution and show
the learnability without the minimum occurring
probability. The condition is that if an occurring
probability of a rule is not the minimum among
the target grammar and denoted by d, then there
exists a rule whose occurring probability is bigger
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than d/2 and less than d. With this condition,
we can obtain the number of examples for the
polynomial time learning of the target language
in polynomial time via membership queries.

2 Preliminaries

A context-free grammar (CFQG) is a 4-tuple G =
(N, X, P,S) where N is a finite set of nontermi-
nals, X' is a finite set of terminals, P is a finite set
of rewriting rules (rules for short) and S € N is
the start symbol. Let o be the word whose length
is 0, and () be the empty set. If G = (N, X, P, S)
is o-free and any rule in P is of the form A — af
then G is said to be in Greibach normal form,
where A € Nya € ¥, € N* and |§] < 2.

Let A — af be in P where A € N, a € X
and 3 € N* Let v and v/ € N*. Then
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~yAY :G>fya/6'y’ denotes the derivation and :;> de-
notes the reflexive and transitive closure of :G>

The language generated from v by G is denoted
by La(y) = {w € X* | y%w}. The language
generated from the start symbol S by G is called
the language generated by G, and it is denoted
by L(G) = Lg(S). A nonterminal A € N is said
to be reachable if S:;MUAB for some w € X*,

B € N*, and a nonterminal D € N is said to be
live if Lg(D) # 0.

A CFG G is a simple deterministic grammar
(SDG) iff there exists at most one rule which is
of the form A — af for every pair of A € N and
a € Y where § € Y UN and |8] < 2, 1. e. if
A — af isin P then A — a7y is not in P for
any v € N* such that v # ([3]. We note that
there exists exactly one derivation for each w €
L(G) in an SDG G. The language generated by
an SDG is called a simple deterministic language
(SDL for short). In addition, such a set P of
rules is called simple deterministic. The set of
symmetric differences between L(G1) and L(G3)
is denoted by L(G1)AL(G2).

Throughout this paper, we denote a hypoth-
esis by Lj and the target language by L;. Let
D be a probability distribution over X* and let
Pr(w) be the probability for w € X*. The learn-
ing from randomly drawn examples is called a
PACI6] learning if a hypothesis Ly, satisfies

PrP(LyAL) <e] >1-0 (1)

for an error parameter 0 < ¢ < 1 and a confi-
dence parameter 0 < ¢ < 1, where P(L,AL;)
is the probability of difference between Lj and
L;, i.e. the total of the probability for every w €
L AL; on the distribution D. Even though the
learner can use either some queries or additional
information, we call L; a PAC hypothesis if Ly,
satisfies (1). An ezample consists an ezample word
w € X* and the teaching signal {0,1} according
to w € Ly or not. For any other definitions about
PAC learning, the reader refers to [4].

For an SDG G = (N, X, P,S) and the distri-
bution D, we can define the probability for every
rule A — af in P as follows:

Pr(A —af) = Z Pr(w)
weZ(A—af)
where
Z(A—af) = {weX*|S=aday =

arafBas = w for some
a1, 00 € (NU X))
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That is to say, Pr(A — af3) is an occurring prob-
ability of A — af when a sample word is given.

We call a class of languages is exact learnable
via some additional settings (such as queries or a
special set of examples) if there exists a learning
algorithm which uses the additional settings and
whose hypothesis G}, is equivalent to the target
language Ly, i. e. L(Gp) = Ly.

A membership query replies with 1 or 0 ac-
cording to w € Ly or w & L, respectively. Here,
w € X* is the input word asked by the learner.

3 The SDL learning algo-
rithm

In this section, we introduce outline of our pre-
vious work. In [5], the following theorems are
proved by showing the learning algorithm.

Theorem 1 (Tajima et al.[5] Theorem 6)

SDLs are polynomial time exact learnable via
membership queries and a set of representative
sample. O

Here, a set of representative sample is defined as
follows.

Definition 2 Let G = (N, X, P,S) be an SDG
such that every A € N is reachable and live. Let
Q be a finite subset of L(G). Then Q is a repre-
sentative sample (RS) of G iff the following holds.

e For any A — af in P, there exists a word
w € Q such that S=zAy = zafBy=w for
some x € X* and v € N*. |

Definition 3 For an SDL L, a finite set Q C L
is an RS iff there exists an SDG G = (N, X, P, S)
such that L(G) = L and @ is an RS of G. O

Our result in this paper is a reduction of condi-
tions in the following theorem.

Theorem 4 (Tajima et al.[5] Theorem 20)
There exists a polynomial time learning algorithm
of SDLs such that

e the hypothesis is PAC,

e there exists an SDG G; = (Ny, X, P, St)
such that L(G;) = L; and every rule A — 3
in P, has the occurring probability which is
bigger than or equal to d, i.e. Pr(A — ) >
da

e the learner knows the size of G; and d, and
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e the learner can ask membership queries and
can obtain m random examples where

m > élog(%).

O

The outline of the learning algorithm of Theorem
4 is as follows[5].

1. Take m examples (let @ be the set of sample
‘Pt‘ )

words). Here, m > 1 log(5H
2. Construct the CFG G¢ = (N¢, X, P, Sc)
as follows.

e The set of rules P¢ is made from all pos-
sible skeletons by which all positive ex-
ample word in m examples can be gen-
erated.

e Then, all rules which lead conflicts on
checking words W are deleted from Pg.

In other words, G¢ can generate all words
whose derivations on G only consist of rules
used in that of positive example words. Thus,
L(G¢) 2 L; holds if the set of m exam-
ple words contain an RS. If the learner con-
structs a set W of correct checking words
then the hypothesis becomes correct. This
CFG has the same characteristics as the hy-
pothesis of Ishizaka’s algorithm][2].

3. Construct an SDG for every rule in P¢, and
let G be the set of such SDGs. We call G
base grammars.

4. Find Lg,(A)ALg,(A) for every A € N¢ and
every pair of G; € G and G2 € G.

5. If there exists a witness word w €

La,(A)ALg,(A) then add all sub-words of
w to W and go back to 2.

6. If there is no witness word and G # () then
output any G € G else the learning fails.

We call this learning algorithm Algorithm1. Here,
the CFG G¢ satisfies the following conditions.

e For every nonterminal A € N; occurs in
derivations of m example words, there exists
Ac € N¢ such that if Sy = aAf = aw'f = w

Gt G G

for w € Q and w’ € ¥t then Acg*>wl-
C
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We call that A¢ corresponds to A.

From this property, for every derivation
S = al A = ajasA ... Saa, =
tg M 151 o, a2 202 o g u n

w where w € Q, a; € tE, Aif € N; and
Bi € Nf (i = 1,---,n), there exist Ac; €
N¢ which corresponds to A; (i = 1,---,n)
such that S¢ = a1 Ac1 801 = a1a2Acafes = - -
Ge Geo Ge

*
?a1-~an=wwhereﬁc¢€N3

cIn the theorem 4, d is partial information of
the distribution D for the learner. Thus, a learn-
ing setting without knowing d is more desirable
setting for the learning.

4 A setting without the mini-
mum occurring probability

Suppose an SDG G; = (N, X, P, S¢) such that
L(Gt) = L;. We consider the following restric-
tions for the occurring probability of G;. Here,
let d = min{Pr(A — 8) | A— 8 in P}.

e For a rule A — 3 in P, if the occurring
probability Pr(A — ) > d then there ex-
ists at least one rule B — « in P; such that
Pr(A— () > Pr(B —~) > Pr(A— 3)/2.

We call this restriction continuous occurrence of
Gy, and such a distribution is called continuous
occurrence distribution. Because of this restric-
tion, the distribution D is not independent of G;.

In Fig. 1, we show the SDL learning algo-
rithm under a continuous occurrence distribution.
Angluin[1] has shown that the sample complexity
n; is enough to check the hypothesis is PAC or
not. That is

n; > % <log(%) + (log2)(i + 1)) :

Now, we show the correctness of this algorithm.

Theorem 5 SDLs are polynomial time learnable
under the continuous occurrence distribution via

e membership queries,
e random examples,
e ¢, 0 and | P

Here, the hypothesis is PAC.

Proof : Let dy be the minimum occurring proba-
bility in G;. If d in the algorithm shown in Fig. 1
becomes less than dy, the learning successes with
the probability '"y/1 —§ > 1 —§. Thus, we show
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Algorithm?2
INPUT : g, 0, | Pl;
OUTPUT : a hypothesis SDG Gj;
begin
d:=1;
§:=0;
repeat
d:=d/2;
run Algorithm1 with €,1 — /1 — 4, d, | P;

(let the CFG constructed in the algorithm be G¢ = (N¢, X, Po, S¢))
(let the hypothesis SDG be Gj, = (Np, X, P, S1))

Sp =S
s = |Pcl;

take n; examples;

(Here, n; > 1(log(3) + (log2)(i + 1)))

— €

if (n; examples are not conflict with L(G},)) then

output G}, and terminate;
until (sp > s and s # 0)
output G = (0, X, 0, S);
(the learning fails)
end.

Figure 1: The SDL learning algorithm under the continuous occurrence distribution

that d becomes less than dy with the probability
at least ('"/1 — 9)IF1—1,

Assume that d > dg. The learner obtains a
set of examples such that derivations of exam-
ple words use all rules in Gy whose occurring
probabilities are bigger than d with the proba-
bility '"3/1 — 6. If Algorithm1 fails with this set
of examples, the learner repeats the loop with
d/2. On the other hand, there exists at least
one rule whose occurring probability d’ satisfies
that d > d’ > d/2 from the assumption of con-
tinuous occurring distribution. Thus, at most
| P;| —1 times repetition is enough to make d < do,
and such repetitions occurs with the probability
( \Pt\/l _ 5)\3\—1.

Thus, this theorem holds. O

5 Conclusions

In this paper, we define a special distribution
called a continuous occurring distribution. SDLs
are polynomial time learnable via membership
queries and random examples if the sample dis-
tribution is continuous occurring. In this setting,
the learner does not have to obtain the mini-
mum probability, but variety of distributions is
restricted.
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