o0o0o0oO0ooOoOoOoOoOoOoOoOoOoO0 20050 MPSO 550 200
IPSJ SIG Technical Report [0 20050 601 28

Development of a Thread Scheduler for SMT Processor
Architecture

Kaname Uchikura, Koichi Sasada, Mikiko Sato, Masanori Yamato, Norito Kato,
Hironori Nakajo and Mitaro Namiki
Tokyo University of Agriculture and Technology
2-24-16 Naka-cho, Koganei-shi, Tokyo, Japan

Abstract An SMT(Simultaneous MultiThreading) deciding the most appropriate the number of active
architecture processor aims to progress processor per- threads to decrease cache misses. Second, a sched-
formance by executing parallel threads. However, uler based on a concept of thredtirdty chooses

the increasing cache misses caused by the capacity threads whoseffinity are higher each other.

miss and the conflict miss in the shared cache mem-

ory. In this paper, we propose a thread scheduler

based on a concept of threadfinity. Our proposed

system observes performance of concerning threads 2 Goal

with common cache and reschedules them. In ad-
dition, we have developed a strategy to choose the
suitable thread number according to decreasing of
cache hit ratio. As experimental results, the system
with our thread scheduler performs up to 1.96 times
higher with benchmark programs of RADIX sort in
SPLASH-2.

We develop two types of thread schedulers. It is
a significant issue to decrease L1 cache miss ra-
tio. Increasing L1 cache miss ratio has two causes.
One is the capacity miss, other is the conflict miss.
To remove the capacity miss, we develop a strategy
to choose the suitable thread number according to
decreasing cache hit ratio. While, to remove the
conflict miss, we have developed a thread sched-
uler based on a concept of thredtraty. Our pro-
posed system observes performance of concerning
1 Introduction threads with common cache and reschedules them.

Keywords: thread scheduler, multithreaded architec-
ture, system software

Multithreaded architecture is gaining popularity as
processor architecture progresses. One example
of the Multithreaded architecture &multaneous 3 Designing of the Thread Sched-
MultiThreading (SMT) [1], which executes mul-
tiple threads in parallel while sharing hardware re- uler
sources like arithmetic units to makéieient use
of execution units and improve performance with According to the pilot study researched before-
user level threads controls. hand, a cause of decreasing L1 cache hit ratio is di-
Against this background, SMT processor has vided into two problems. One is the capacity miss,
weakness. On the SMT processor, the increasing other is the conflict miss. We develop the two types
cache misses caused by sharing the cache memoryof thread schedulers to each of those miss prob-
bring performance degradation. lems. The former iThe method to decide on the
In this paper, we have proposed two types of number of threads (DT), the latter isScheduling
thread schedulers. First, a previous scheduler is with Thread A ffinity (SA).

U 50

研究会temp
テキストボックス
社団法人　情報処理学会　研究報告
IPSJ SIG Technical Report

研究会temp
テキストボックス
2005－MPS－55（2）
　2005／6／28

研究会temp
テキストボックス
－5－

Table 1. The assumption to stop an AT and the

number of stopped ATs (a)Getting the whole number of
L1 cache hits and misses
A cache hit ratio 80% less 80 90% 90% more (b)Calculation of formula 1
The number of ATsX) | X+ 1/2 X=3/4 X+ 1 (c)X = the previous number of

executed threads

(d)/*Combining based for Table 2%/
if(Hit_ratio >= 90){

o000 X =X + 1;

3.1 The Method to decide on the Number }1 c .’
else if(Hit_ratio >= 80
of Threads X=X *3/ 4
. }
We propose a thread scheduler which has a strat- else if(Hit_ratio < 80){
egy to choose the suitable thread number according X=X*2/4

to decreasing cache hit ratio. We call this thread ’

schedulefThe method to decide on the number

of threads (DT). Figure 1. The algorithm of the method to decide on
Fig. 1 describes the processing flow of the DT. the thread number

In (a), the DT gets the number of the L1 cache hit

and the number of the L1 cache miss. Their value cache and reschedules them. We call this thread

is counted in the processor. scheduleScheduling with Thread Affinity(SA).
In (b), it calculates the L1 cache hit ratio by us- A Thread Affinity is a performance indicator be-
ing below mathematical formula (1). tween a thread and the other. When the SA gauges
Hit_Ratio: L1 cache hit ratio the Thread Afinity, a thread targets at another one.

This another thread is calledTarget Thread If

Hit_num: The number of cache hits the SA gauges th€hread Afinity between a thread

Miss.num: The number of cache misses which is A and aTarget Threadwhich is B, we
. . Hit_num define theThread Afinity below mathematical for-
Hit_Ratio= Hit_num+ Missnumx 100 (1) mula 2. A andB are each of a thread. B is A’s

In (c), it finds out the number of the threads that Target Thread B is target(A) The share(A,B)is
the processor executed previous time. the number of sharing’s cache data anl's. The
Finally, in (d) it decides on the number of LTs exclude(A,B)s the number of excluding’s cache
along Table 1. If the L1 cache hit ratio decreases data andB's. TA(A,B)is the Thread Afinity be-
less than 80%, the DT assigns half LTs to ATs of tweenA andB. hardA B)
previous executing LTs. If the L1 cache hit ra- _ shardA B
tio decreases between 80% and 90%, the DT as- TAAB) ShardA. B) + excludA B) @
sign 34 LTs to ATs than previous executing LTs. Consequently the SA is able to know tlread
While on the other hand, if the 1st cache hit ratio Agfinity between a thread and a threads.
increases more than 90%, the DT assign some LTs Moreover, by comparinglit_Ratioshown in the
plus 1 to ATs than previous executing LTs. mathematical formula 1 tdA(A,B) we define the
The DT has applied this configuration parame- good or bad Thread Afinity below mathematical
ter in this time from the pilot study. However, most formula (3) and (4).
suitable configuration parameter depends on the 1) > Hit Ratio: Good Thread Af finity(3)

feature of application programs. Therefore, those 1 aa B) < Hit Ratio: Bad Thread Af finity (4)
configuration parameters enable to change.

0O Every time the SA is called, thlit_Ratiois at
3.2 Scheduling with Thread Afinity an average rate of total L1 cache hit ratio on the

SMT processor, in contrast thhread Affinity is
We propose a thread scheduler based on a conceptiocalized L1 cache hit ratio on a couple of threads.
of thread #inity. Our proposed system observes In Fig. 2 which shows module of 4 ATs, each of
performance of concerning threads with common architecture threads hagarget Threagshareand

060

研究会temp
テキストボックス
－6－

AT LLTN

hread Contex

A = LTN /*It has executed until now*/
B = target(A);/*It is A’s target LTN*/
if(TA(A,B) >= Hit_num){

target if(B was stored to a queue){
share) A also is stored to a queue
exclude else{/*B was assigned to an AT*/

A also is assigned to an AT
}
}
else{
if(B was stored to a queue){
A is assigned to an AT
}
else{/*B was assigned to an AT*/
A is stored to a queue
}
}

hread Contex
target)
(

share]
(exclude

hread Contex

target)
(Sshare]
\(exclude

Figure 2. The relation between a thread and a tar-
get thread

Figure 3. The algorithm of the scheduler with
Thread Afinity
excluderegister in thread contexts. Each of thread
has just ondarget Threadegister. By rights, each ginity will increase.
of threads provides some registers to stordait
get Threadsand should observe all of thEhread)
Affinity. For example, if the configuration of the 4 Evaluation
SMT processor is 4 ATs, a thread combination is
6 ways. If 8 ATs, a thread combination is 28 In the evaluation, we use LU matrix decom-
ways! However we have made the specification POsition(LU), Fast Fourier Transform(FFT)
of the SA to use registers requisite minimum be- and RADIX sort(RADIX) from SPLASH-2
cause the SMT processor is limited to thread con- Penchmark.[2] Each of them products 16 threads.
texts and registers. All of the data suchHis num The L1 cache size is 4KB and 32KB. The number
Miss.num shareandexcludeare counted in the AT of architecture threads is 4 and 8. The thread
and kept into the AT’s thread context. scheduler mode is DT, SA, and BBA.

Fig. 3 describes the processing flow of the SA. e researched speed up ratio from an IPC ap-
In the SA according to whether the threatirity plying the thread schedulers and an IPC applying
between a thread and its target thread is good or none t'hread scheduler. Fig. 4 describes the speed
bad, it is assigned to an AT again or stored to a UP ratio of each benchmarks and ATs when the
queue. A thread also is assigned to an AT if ts tar- speed up ratio of none scheduler_mode is defined as
get thread is assigned when the thresithy be- 1.00. In the case of L1 cache size 4KB, RADIX,
tween them is good and it also is stored to a queue 8 ATS: and DTSA, the thread scheduler performs
if its target thread is stored. A thread is inversely UP t0 1.96 times higher than none thread scheduler.
stored to a queue if its target thread is assigned This is the best speed up ratlo_ln all the executions.
when the threadflinity between them is bad and In the case of L1 cache size 4KBffects of
it is inversely assigned to an AT if its target thread thg DT ha§ appeared strongly. We have accom-
is stored to a queue. The SA should assign a cou- Plished an improvement of an SMT processor per-
ple of threads if they are good threatiiity and formance. On applying the DT, both IPC of 4 ATs

divide an AT from a queue if they are bad thread 2nd IPC of 8 ATs have gone up to 1.60. In this
affinity. According to that processing flow, the pos- C2S€; the DT was able to perform better because

sibility of executing threads which are good thread "€ capacity miss have occurred frequently. It fol-
lows that an SMT processor should adopt prevent-

14C, = 6,5C, =28 ing the decline of the L1 cache hit ratio rather than

gro

研究会temp
テキストボックス
－7－

L1 cache size 4KB L1 cache size 32KB =

2.25 [IsA
NIDTSA
1.96
Q 200 1 RN
E 1.75 ik =x
o 1.50 144 ; 1 137 gf
- — = N 128 N = 1 Lgﬁ%
A 125 = Sm\m —= TSN —
] ! ! = .01 N 1‘”%7 108 409
E 1.00 |1 N =i SINEEN *g‘ik 9% 095 g [\ N
D 0.75 SINEINSEHINEE — 07198 =HINE N
0.50 | SINSEMNRENINSE =ENRE = INE N
0.25 11 =SNZ2NENS =lINgE =INEIN
0.00 \ = — \ \ - \ \ - \ = \ \ = r—
LU FFT RADIX LU FFT RADIX LU FFT RADIX LU FFT RADIX
4AT 4AT 4AT 8AT 8AT B8AT 4AT 4AT 4AT 8AT 8AT B8AT
Scheduler mode and programs
Figure 4. The speed up ratio by scheduler mode
*The speed up ratio of none scheduler mode is defined as 1.00 on each of benchmarks.
executing parallel threads to the full. oped thread scheduler performs up to 1.96 times

In the case of L1 cache size 32KBffexts of higher with benchmark programs of RADIX sort
the SA have appeared strongly. On applying the in SPLASH-2.

SA, FFT and RADIX have shown performance no- In future work, attempting to apply these thread
tably better because they have accomplished com- scheduler; the DT and the SA to the other SMT
bining a couple of thread which are godtiaity by processor and finding them to bfestive.

discerning good and badfanity. If an SMT pro-

cessor executes parallel threads with sharing much
of cache data, its performance will progress bet-
ter. However, LU has not shown performance bet-
ter because a working set of the LU program has

shared little. mizing on-chip parallelism, IrProceedings

‘The DT and the SA were able to accom- of the22th Annual International Symposium on
p||Sh high performan'ce by overcomlng Weqknesses Computer Architecturepp. 392—403, 1995.
which are the capacity miss and conflict miss.

References

[1] Dean M. Tullsen, Susan Eggers, and Henry M.
Levy: Simultaneous multithreading: Maxi-

[2] Steven C. Woo, Moriyoshi Ohara, Evan Tor-
rie, Jaswinder P. Singh, and Anoop Gupta:
5 Conclusion The SPLASH-2 Programs:Characterization and
Methodological Consid-erations, IRroceed-
In this paper, we have proposed and developed ings of the22th Annual International Sym-
a thread scheduler based on a concept of thread posium on Computer Architectyrgp.24—36,
affinity. Our proposed system observes perfor- 1995.
mance of concerning threads with common cache
and reschedules them. In addition, we have devel-
oped a strategy to choose the suitable thread num-
ber according to decreasing of cache hit ratio. As
experimental results, the system with our devel-

0 80

研究会temp
テキストボックス
－8－

