
Development of a Thread Scheduler for SMT Processor
Architecture

Kaname Uchikura, Koichi Sasada, Mikiko Sato, Masanori Yamato, Norito Kato,
Hironori Nakajo and Mitaro Namiki

Tokyo University of Agriculture and Technology
2-24-16 Naka-cho, Koganei-shi, Tokyo, Japan

Abstract An SMT(Simultaneous MultiThreading)
architecture processor aims to progress processor per-
formance by executing parallel threads. However,
the increasing cache misses caused by the capacity
miss and the conflict miss in the shared cache mem-
ory. In this paper, we propose a thread scheduler
based on a concept of thread affinity. Our proposed
system observes performance of concerning threads
with common cache and reschedules them. In ad-
dition, we have developed a strategy to choose the
suitable thread number according to decreasing of
cache hit ratio. As experimental results, the system
with our thread scheduler performs up to 1.96 times
higher with benchmark programs of RADIX sort in
SPLASH-2.

Keywords: thread scheduler, multithreaded architec-
ture, system software

1 Introduction

Multithreaded architecture is gaining popularity as
processor architecture progresses. One example
of the Multithreaded architecture isSimultaneous
MultiThreading (SMT) [1], which executes mul-
tiple threads in parallel while sharing hardware re-
sources like arithmetic units to make efficient use
of execution units and improve performance with
user level threads controls.

Against this background, SMT processor has
weakness. On the SMT processor, the increasing
cache misses caused by sharing the cache memory
bring performance degradation.

In this paper, we have proposed two types of
thread schedulers. First, a previous scheduler is

deciding the most appropriate the number of active
threads to decrease cache misses. Second, a sched-
uler based on a concept of thread affinity chooses
threads whose affinity are higher each other.

2 Goal

We develop two types of thread schedulers. It is
a significant issue to decrease L1 cache miss ra-
tio. Increasing L1 cache miss ratio has two causes.
One is the capacity miss, other is the conflict miss.
To remove the capacity miss, we develop a strategy
to choose the suitable thread number according to
decreasing cache hit ratio. While, to remove the
conflict miss, we have developed a thread sched-
uler based on a concept of thread affinity. Our pro-
posed system observes performance of concerning
threads with common cache and reschedules them.

3 Designing of the Thread Sched-
uler

According to the pilot study researched before-
hand, a cause of decreasing L1 cache hit ratio is di-
vided into two problems. One is the capacity miss,
other is the conflict miss. We develop the two types
of thread schedulers to each of those miss prob-
lems. The former isThe method to decide on the
number of threads (DT), the latter isScheduling
with Thread A ffinity (SA).

研究会temp
テキストボックス
社団法人　情報処理学会　研究報告
IPSJ SIG Technical Report

研究会temp
テキストボックス
2005－MPS－55（2）
　2005／6／28

研究会temp
テキストボックス
－5－



Table 1. The assumption to stop an AT and the
number of stopped ATs

A cache hit ratio 80% less 80～90% 90% more
The number of ATs (X) X ∗ 1/2 X ∗ 3/4 X + 1

3.1 The Method to decide on the Number
of Threads

We propose a thread scheduler which has a strat-
egy to choose the suitable thread number according
to decreasing cache hit ratio. We call this thread
schedulerThe method to decide on the number
of threads (DT).

Fig. 1 describes the processing flow of the DT.
In (a), the DT gets the number of the L1 cache hit
and the number of the L1 cache miss. Their value
is counted in the processor.

In (b), it calculates the L1 cache hit ratio by us-
ing below mathematical formula (1).

Hit Ratio : L1 cache hit ratio

Hit num: The number of cache hits

Miss num: The number of cache misses

Hit Ratio=
Hit num

Hit num+ Miss num
× 100 (1)

In (c), it finds out the number of the threads that
the processor executed previous time.

Finally, in (d) it decides on the number of LTs
along Table 1. If the L1 cache hit ratio decreases
less than 80%, the DT assigns half LTs to ATs of
previous executing LTs. If the L1 cache hit ra-
tio decreases between 80% and 90%, the DT as-
sign 3/4 LTs to ATs than previous executing LTs.
While on the other hand, if the 1st cache hit ratio
increases more than 90%, the DT assign some LTs
plus 1 to ATs than previous executing LTs.

The DT has applied this configuration parame-
ter in this time from the pilot study. However, most
suitable configuration parameter depends on the
feature of application programs. Therefore, those
configuration parameters enable to change.

3.2 Scheduling with Thread Affinity

We propose a thread scheduler based on a concept
of thread affinity. Our proposed system observes
performance of concerning threads with common

(a)Getting the whole number of

L1 cache hits and misses

(b)Calculation of formula 1

(c)X = the previous number of

executed threads

(d)/*Combining based for Table 2*/

if(Hit_ratio >= 90){

　　　　 X = X + 1;

}

else if(Hit_ratio >= 80){

X = X * 3 / 4;

}

else if(Hit_ratio < 80){

X = X * 2 / 4;

}

Figure 1. The algorithm of the method to decide on
the thread number

cache and reschedules them. We call this thread
schedulerScheduling with Thread Affinity(SA).

A Thread Affinity is a performance indicator be-
tween a thread and the other. When the SA gauges
theThread Affinity, a thread targets at another one.
This another thread is called aTarget Thread. If
the SA gauges theThread Affinity between a thread
which is A and aTarget Threadwhich is B, we
define theThread Affinity below mathematical for-
mula 2. A andB are each of a thread. IfB is A’s
Target Thread, B is target(A). The share(A,B)is
the number of sharingA’s cache data andB’s. The
exclude(A,B)is the number of excludingA’s cache
data andB’s. TA(A,B) is the Thread Affinity be-
tweenA andB.

T A(A, B) =
share(A, B)

share(A, B) + exclude(A, B)
× 100 (2)

Consequently the SA is able to know theThread
Affinity between a threadA and a threadB.

Moreover, by comparingHit Ratioshown in the
mathematical formula 1 toTA(A,B), we define the
good or bad Thread Affinity below mathematical
formula (3) and (4).

T A(A, B) = Hit Ratio : Good Thread A f f inity(3)
T A(A, B) < Hit Ratio : Bad Thread A f f inity (4)

　Every time the SA is called, theHit Ratio is at
an average rate of total L1 cache hit ratio on the
SMT processor, in contrast theThread Affinity is
localized L1 cache hit ratio on a couple of threads.

In Fig. 2 which shows module of 4 ATs, each of
architecture threads has aTarget Thread, shareand

研究会temp
テキストボックス
－6－



Figure 2. The relation between a thread and a tar-
get thread

excluderegister in thread contexts. Each of thread
has just oneTarget Threadregister. By rights, each
of threads provides some registers to store allTar-
get Threadsand should observe all of theThread
Affinity. For example, if the configuration of the
SMT processor is 4 ATs, a thread combination is
6 ways. If 8 ATs, a thread combination is 28
ways.1 However we have made the specification
of the SA to use registers requisite minimum be-
cause the SMT processor is limited to thread con-
texts and registers. All of the data such asHit num,
Miss num, shareandexcludeare counted in the AT
and kept into the AT’s thread context.

Fig. 3 describes the processing flow of the SA.
In the SA according to whether the thread affinity
between a thread and its target thread is good or
bad, it is assigned to an AT again or stored to a
queue. A thread also is assigned to an AT if its tar-
get thread is assigned when the thread affinity be-
tween them is good and it also is stored to a queue
if its target thread is stored. A thread is inversely
stored to a queue if its target thread is assigned
when the thread affinity between them is bad and
it is inversely assigned to an AT if its target thread
is stored to a queue. The SA should assign a cou-
ple of threads if they are good thread affinity and
divide an AT from a queue if they are bad thread
affinity. According to that processing flow, the pos-
sibility of executing threads which are good thread

1
4C2 = 6, 8C2 = 28

A = LTN /*It has executed until now*/

B = target(A);/*It is A’s target LTN*/

if(TA(A,B) >= Hit_num){

if(B was stored to a queue){

A also is stored to a queue

}

else{/*B was assigned to an AT*/

A also is assigned to an AT

}

}

else{

if(B was stored to a queue){

A is assigned to an AT

}

else{/*B was assigned to an AT*/

A is stored to a queue

}

}

Figure 3. The algorithm of the scheduler with
Thread Affinity

affinity will increase.

4 Evaluation

In the evaluation, we use LU matrix decom-
position(LU), Fast Fourier Transform(FFT)
and RADIX sort(RADIX) from SPLASH-2
benchmark.[2] Each of them products 16 threads.
The L1 cache size is 4KB and 32KB. The number
of architecture threads is 4 and 8. The thread
scheduler mode is DT, SA, and DT+SA.

We researched speed up ratio from an IPC ap-
plying the thread schedulers and an IPC applying
none thread scheduler. Fig. 4 describes the speed
up ratio of each benchmarks and ATs when the
speed up ratio of none scheduler mode is defined as
1.00. In the case of L1 cache size 4KB, RADIX,
8 ATs, and DTSA, the thread scheduler performs
up to 1.96 times higher than none thread scheduler.
This is the best speed up ratio in all the executions.

In the case of L1 cache size 4KB, effects of
the DT has appeared strongly. We have accom-
plished an improvement of an SMT processor per-
formance. On applying the DT, both IPC of 4 ATs
and IPC of 8 ATs have gone up to 1.60. In this
case, the DT was able to perform better because
the capacity miss have occurred frequently. It fol-
lows that an SMT processor should adopt prevent-
ing the decline of the L1 cache hit ratio rather than

研究会temp
テキストボックス
－7－



Figure 4. The speed up ratio by scheduler mode
*The speed up ratio of none scheduler mode is defined as 1.00 on each of benchmarks.

executing parallel threads to the full.
In the case of L1 cache size 32KB, effects of

the SA have appeared strongly. On applying the
SA, FFT and RADIX have shown performance no-
tably better because they have accomplished com-
bining a couple of thread which are good affinity by
discerning good and bad affinity. If an SMT pro-
cessor executes parallel threads with sharing much
of cache data, its performance will progress bet-
ter. However, LU has not shown performance bet-
ter because a working set of the LU program has
shared little.

The DT and the SA were able to accom-
plish high performance by overcoming weaknesses
which are the capacity miss and conflict miss.

5 Conclusion

In this paper, we have proposed and developed
a thread scheduler based on a concept of thread
affinity. Our proposed system observes perfor-
mance of concerning threads with common cache
and reschedules them. In addition, we have devel-
oped a strategy to choose the suitable thread num-
ber according to decreasing of cache hit ratio. As
experimental results, the system with our devel-

oped thread scheduler performs up to 1.96 times
higher with benchmark programs of RADIX sort
in SPLASH-2.

In future work, attempting to apply these thread
scheduler; the DT and the SA to the other SMT
processor and finding them to be effective.

References

[1] Dean M. Tullsen, Susan Eggers, and Henry M.
Levy: Simultaneous multithreading: Maxi-
mizing on-chip parallelism, InProceedings
of the22th Annual International Symposium on
Computer Architecture, pp. 392–403, 1995.

[2] Steven C. Woo, Moriyoshi Ohara, Evan Tor-
rie, Jaswinder P. Singh, and Anoop Gupta:
The SPLASH-2 Programs:Characterization and
Methodological Consid-erations, InProceed-
ings of the22th Annual International Sym-
posium on Computer Architecture, pp.24–36,
1995.

研究会temp
テキストボックス
－8－




