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(The proofs of Theorems 1 and 2 are abbreviated
because of space constraint.)

1 Introduction

Suppose we are learning a Bayesian network (BN)
structure from finite examples (Cooper and Her-
skovits, 1992).

A BN is a directed acyclic graph with some nodes
1,2,---,N (N: the number of nodes) and edges di-
recting from each k € 7« to j, for some 7(/) C
{1,2,---,7 -1}, j = 1,---,N. By the BN struc-
ture, we mean the 7V = (7(1) ... 7(™) of the BN.
Each node j corresponds to a random variable X (),
We assume X ) takes on a finite set X'7) with car-
dinality o/), and that the marginal distribution of

XM ... X(N) g expressed by

PXWM = 20 ... XN 4N

N
H P(XY =2 W{X® =2}, ) (1)

2D e X . N ¢ x(N) e

of X depends on those of X,
N

the occurrence
ke @, If

is given, the
marginal distribution is specified if for j =1,---, N,
P(XW) = 20| x®) = z(®) k¢ 70)) are given for all
2@ e x@) k) e x*) | e 70,

The problem is to estimate m = (71'(1),---,

the Bayesian network structure =

7T(N))

Jgod,00oooooooooooooo
573-1194 0000000 1-1
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from n examples z™

X0 =M x@ =® XV = 5
X =z x@) =4 XV = (M)
x(1) = m(l) Y2 = $(2) - X (N) — mglN) ’

assuming that the z™ have been emitted indepen-
dently and identically distributed according to (1)
with the structure 7V, and that no value is missing in
the nIV attributes. Hence, without loss of generality,
we estimate each 7(9) independently, j = 1,2,---, N.

We define S(7()) == {{(zM),---,2z0-"D)|z(k) =
stk e 7Y s® e x® k e 70D}, Then,
S(79)) has [,cpi) a®) elements, and for each s =
{(2M, -, 20-D)2z®) = s®) k€ 7))} € S(xD),

we notice

P(XW = gD x#) = 5} ¢ 700))
(X(J) — 0 )|(X(1) X(j—l)) €s).

Hereafter, let X := XD x x0-1 .= x0) x .
(XM, ) X0-D) Y := XU, and 7 := 7). Let
Te = 7T£j) be the true 7 = 7(9), and ply, s*] :== P(Y =
y|X € s*) for each s* € S(n*). We define p[s] :=

P(X € s) for each s C X, and

Pl 8] = Z pls N s*]

s*ES(T*) p[S]

———ly,s"] . (2)
for m # 7* and s € S(w) such that p[s] > 0. Notice
ply,s] is the sum of {ply,s*]}s-es(x,) weighted by
p[s N s*]/p[s], and that for s € 7 and s* € 7*

s Cs" = ply,s] = ply,s™] - 3)
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For each y € Y and s € S(m), let c,ly,s] is the
number of occurrences in z™ such that ¥ = y and
X € s, and ¢, [s] == max{1,> i) cnly,s|}. Then,
Duly, s](z™) := cnly, s]/cn[s] almost surely converges

to ply, s].
In this paper, we analyze the following strategy:

select the model minimizing
L(m,z™) :== H(m,2") + ——=d, (4)

(Suzuki, 1993), where H(m,z™) =
ZSGS(’A') Zyey Cn[y’ S] IOg C?Ey[f]s] ) k'(ﬂ') =

(VI = DS = (@9 = DI, ™, {da}izy
is a real nonnegative sequence, logx denotes the

natural logarithm of z, and 0log0 = 0.

H(m,z™) is the so-called empirical entropy of y € Y
given s € S(m), and k(n) is interpreted as the number
of independent {ply, s]}ycy scs(x

s € S( )7 Eyeyp[yvs] =1
We compromize fitness of data to a model and sim-

) because for each

plicity of the model by balancing H(w,z™) and k()
and adjust their weights by {d,}32;.

This paper analyzes the model selection procedures
based on information criteria in the form of (4) in
a unified manner, instead of considering each infor-
mation criterion such as Akaike’s information crite-
rion (Akaike 1974, d,, = 2), the minimum description
length (MDL) principle (Rissanen 1978, d,, = logn),
the Bayesian information criterion (Schwarz 1978,
d, = logn), etc.

For each j = 1,2,---, N, we classify the estimation
result 7,(z") := argmin, L(mw,2") by @, (z") = 7.
(the exact links), @, (2") D m, (adding extra links
without missing links), and #,(z") 2 7. (missing
links). We wish the probability of the first category
to be as large as possible for each j.

We define the Kullback divergence by

D(m.|7) := Z Z Zpsﬂs S*]logp[y’

seS(m) s*€S(my) YEY

Then, if 7 D =, for all Vs € S(n), there exists s* €
7. such that s C s*, so that D(m.||w) =0 (see (3)).

w2 = D(m||m) =0 . (5)

Let s(z,m),z € X be the s € S(7) such that = € s,

and

s(me, 7)== {& € Xply, s(z, )] # ply, s(z, )]}

ply,s]

be the set of z € X such that the probabilities of
y € Y are different between the structures 7, and 7.

We assume that P(X = x) satisfies

Assumption 1 For 7 such that s(m.,7) # ¢,
P(X € s(m,m)) >0,

which means that we can obtain examples that dis-
tinguish 7, and 7 such that s(m., ) # ¢. Thus,

D(m||r) =0 =7 D m . (6)

We derive (in Section 2) the asymptotic exact er-
ror probability P(7#,(z™) # ) in model selection
for each {d,}>2; in (4). Then, if p,[y, s](z™) almost
surely converges to ply, s|, from (5), the discriminant
betwen 7, and 7 (2 7,) is asymptotically larger than
that between 7, and 7 (D 7). We show in Section
2 that the probability of 7(X™) # 7, is expressed in
terms of the k(m) — k(m.) and {d,}>, for the second
category while that of #,(X"™) # m. exponentially
diminishes for the third category:

k(m) — k(m,
Fk(")—;(ﬂ*)dn(%

P{z" : 7, (a") #m.} < 1— o

where I'; () is the incomplete Gamma function with
respect to parameter x.
There are two meanings of consistency in model

selection:

o if P(7,(X™) # m) — 0 as n — oo (probability
convergence), then we say the sequence {d,,}2°

is weekly consitent; and

o if X°° = 2 such that 7(X™) = =, for all but
finite n with probability one (almost sure conver-
gence), we say the sequence {d,}32, is strongly

consistent.

Strong consistency implies weak consistency al-
though the converse is not true. We are interested
in strong consistency.

Let D be the set of real nonnegative sequences
{d,}2 such that limsup,,_,. d,/n = 0. We define
the partial order < in D: for any {d}>2,,{d'}>2, €

o o et edn
D, {d};2, > {d'}p>, if hnn_l)gf T > 1.

The climax of this paper (in Section 3) is in the
derivation of the smallest {d}3>, € D that sat-
isfies strong consistency for BN structure learning,
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i.e. the BN structure learning counterpart of Han-
nan and Quinn’s information criterion that was pro-
vided for ARMA processes.
problem is whether d = 2loglogn is the smallest

More precisely, the

such that {d,}22, is strongly consistent for Vr =
(m{l) W(N))

) *

. We solve this problem in the affir-

mative.

2 Error probabilities

In what follows, we derive P{z" : 7r,(z") # m}

both for the two cases: 7#,(z") D 7. and 7,(z") 2

Tx.

2.1 Error for adding extra links with-
out missing links

Theorem 1 For 7t,(z™) D m. and any {d,}32, €

D.

[ iy—rrn dn(

#W*}Sl_ 2 2

P{a" : 7n(X7™)
1-1( k(ﬂ-) —

(7)
almost surely as n — oo, where T';(-) is the incom-
plete Gamma function with respect to parameter x

and T'(-) = Too(+) is the Gamma function.

2.2 Error for missing links

Theorem 2 For 7, (z™) 2 m«, almost surely as n —
00

L(m,z™) —

n

L(my,z™)

— D(m.||m) . (8)

n)?‘éﬂ'*

In particular, almost surely as n — oo, 7, (x
for any {432, € D.

3 Strong Consistency of Model
Selection

Theorem 3 suggests that d; = 2loglogn is the
smallest in D that makes the model selection pro-
cedure strongly consistent for BN structure learning

as well as for ARMA processes.
Theorem 3 Under Assumption 1,

LI {d*)2, < {d}22, € D, then {dn}2, is
strongly consistent for Vr; and
2. If {d*}52, > {d};2, € D, then {d,}52; is not

strongly consistent for I if N > 2,

where 7V =

Proof of Theorem 3: From Theorem 2, for 7 2 .,
L(m,z™) > L(m.,z™) almost surely as n — oo if
{d,}2, € D.
We show for m (D m.), almost surely
H(my,x™) — H(m,z")

li =K X 9
1Trlnﬁs01<1)p loglog n (m, ) 9)

where K (m,m.) = . o (IT(s", m)] = D(IV] = 1) as
before.

The proof is based on an extended version of Kol-
mogorov’s law of the iterated logarithm. (Stout 1974,
page 269 for independent and identically distributed

random variables):

Lemma 1 Let {S,, Fn,,n > 1} be a martingale with
So =0 and E[S1] = 0. Let K,, be F,_1-measurable
for all n > 1 with K,, — 0 a.s., and Z,, = S,, — Sn—1

n

=Y E[Z}|Fi1] = oo

t=1

for n. > 1. If we suppose s>

asn — oo and

KTL n
< i s (10)
v/loglog s2
for n > 1, then almost surely
lim sup S =1 (11)

n— oo

/252 loglog s2

We define {Z,,} as

Z Z i, s]wly, 7]

11X € s](I[Yn = y] - ply,

)

cnlslply, s*]/n

(12)
One easily checks that {S,,F,,n > 1} is a mar-
tingale, i.e. (12) satisfies E[Z,|Fn-1] = 0 with
Zn = Sy — Sp_q for each n > 1, Sy = 0, and
E[S1] = 0. Then, from the definitions of matrices
V,U, W, and Q,

>z

s€S(s*,my) YEY

S, =

= Z Z i, s]wly, 7] Z [(X: €5,Y; =y

s€S(s*,m) yey

n

—ZIXtES ply,s*]}/ ply,s*]/n
S S ulishuly, loaly, 5] =

sES(s*,my) YEY

SN

o750

Vngli,y] -
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Since

E[I[X, € s|(I[Y; = y] - ply, s"DI[Xe € ')(I[Ye = ]

—ply',5*)/V/enls]eals']] = 0

for s,s' € S(s*,9), v,y € Y, where E[] is the
expectation over (X;,Y;), t = 1,2,---,n, we have
E[Z,Zy]=0for 1 <t <, so that

2 = Y BZIFA
t=1

= E[{)_Z})’s, = E[S7]

= Bl{Vngli,j]}’] =n . (13)

If we put K,, = n~'/3, the conditions for Lemma
3 are satisfied: K, — 0 as n — oo; s2 = n — o0
as n — oo; and |Z,| < oo and Kps,/4/2loglogs2 =
n'/%/\/2Toglogn — oo as n — oo. Therefore, from
(12) and (13), we obtain

lim sup M -1
n—oo V/2nloglogn

as,i=1,2-a—1,j=1,2-- f-1.

Then, from Proposition 1, almost surely,

lim sup Als",ma")
nooo 2loglogn
a—13-1

SO dli g

= limsu i

N n_mop 2loglogn
a—13-1 ..

_ . qli, j]?

= E::E:lnnsupéT—jf——
i=1 j=1 oglogmn
a—1p8-1

= Y Y i=-nE-1)

i=1 j=1

= (TG =DV =1) . (14)

The second equality in (14) should be generally “<”.
However, from Theorem 1, ¢[i,j], i = 1,2,---,a —
1,7 = 1,2,---,8 — 1, are statistically independent.
Therefore, each term ¢[é, j] can independently reach
the limsup infinitely many times but exceed it finitely
many times with probability one. Therefore, the sec-
ond equality in (14) holds. From (??), (9) follows.
If {2loglogn}?, < {d,}>2, € D, then almost

surely

lim inf L(mz") = L(r,,2")

n—00 2loglogn

= —liminf H(r.,2") - H(r,z")
n—oo 210g10gn
+k(7r) — k()  dn
2 2loglogn

(k(m) — k(m) (G 1o§?ogn

> —1). (15)
Since 7 # m., k(m.) < k(m), so that the right of (15)
is strictly positive for large n. Hence, almost surely
Tn (™) = e

On the other hand, suppose {2loglogn} >
{d,}>>, € D. Then, for G = {m., 7} such that 7 =
({41 and 7Y = ({}, {1}, {}) (N > 2), ak-

most surely

L(m,z™) — L(m,, ™)

lim inf

n—oo 2loglogn
XMW —1 d
RURARIEEY Cheo
2 2loglogn

Hence, L(m,z™) < L(7m«,z™) infinitely many times

with probability one. This completes the proof.
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