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Abstract  Content based music retrieval is attracting more and more research interest. Suitable feature sets
and similarity match approaches can help to reduce the tedious computation time and speed up the retrieval. This
article mainly contributes in the two-fold to acoustic based music retrieval: 1. we report a study of the music
spectral property and show that the spectral features of adjacent frames are highly correlated; 2. on the basic
acoustic characteristics analysis we propose a fast and efficient Query-by-Example Music Retrieval modeling
focused on spectral correlation. The extensive evaluations confirm the effectiveness of the proposed retrieval
model for both monophonic and polyphonic music. The simulation results are analyzed with a theoretical ap-
proach that seeks to obtain the mathematical relation for our retrieval system parameters such as Spectral Corre-

lation (SC) threshold, storage, and computation.

Keyword Content based music retrieval, spectral correlation, pre-filtering, dynamic programming.

1. Introduction

Content-Based Music Retrieval (CBMR) in database
systems is gradually becoming a popular topic, where
the query music is matched against the reference
melodies under a certain criterion of music similarity.
CBMR in acoustic form is generally the most natural
but difficult due to the high dimensionality of the
features, complex computation, and large database
size. To reduce the huge computation with almost no
efficient indexing algorithms, many researchers have
tried two ways: improving the CBMR by cutting
down the dimensionality of the features and optimiz-
ing the sequence matching algorithms.

The “energy profile” is adopted as the feature in
[1], and the spectrum-based minimum-distance is
used to improve the accuracy; both of the feature se-
guences are compared by DP. Yang [2] also adopted
the short time spectrum as the feature, except that
only the signal of the local maximum is selected to
calculate the feature. A variation of DP methods is
used in feature comparison and the result is further
refined with the linear filtering. The feature size of
the spectrum [1,2] is usually very large, which re-
quires much more storage and computation time.
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More recently Haitsma et al. constructed a cryptog-
raphy hash function to classify pre-defined finger-
prints of acoustic data in a database. A two-stage
search algorithm is built on only performing full fin-
gerprint comparisons at candidate positions
pre-selected by a sub-fingerprint search. Harb [4] re-
ported a query by example music retrieval system
(QEMR) based on the local (1s) and global (10-20s)
acoustic similarities. Additionally, this system pre-
sents music similarity evaluation at a high-level such
as genre classification.

Despite various approaches that have been carried
out on CBMR, little work has been done on analyzing
music signal property. We also focus on the spectral
similarity measurement between the acoustic query
and the acoustic database, especially considering
polyphonic music melodies. Unlike the existing
methods, we emphasize the analysis of the music
property and the spectral correlation of the music
signal and remove the spectral redundancy by merg-
ing the adjacent similar frames. In order to further
improve the retrieval speed we use the low order
MFCC to pre-filter the reference melodies meanwhile
maintaining the high retrieval ratio.

2. Music Spectral Analysis and Feature Selection
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Dissimilar to other kinds of audio, music has
strong descriptive composition—score, which implies
the music theme and is composed of notes. For the
simplicity of description, we define NoteSet as the
simultaneously initiated notes, either a single note, or
the combination of two or more notes.

Figure 1 is an example dealing with different as-
pects of music, from score to spectrum. The music
piece is taken from Chinese folk, Alamuhan. Here a
NoteSet contains one note. The analysis is similar
when a NoteSet consists of multiple notes. Fig.1(a)
presents the score of Alamuhan and Fig.1(b) is the
corresponding energy profile calculated from the
original waveform signal. Fig.1(c) shows the frames
for feature analysis and extraction. Within a NoteSet
the music has a long-term stable spectrum structure
during which the spectrum of adjacent frames are
highly correlated; then it transits to the next NoteSet
and during the transition it experiences an short-term
unstable spectral structure. The variable duration of a
NoteSet in different performances usually lead to
tempo variations problem, and in results requires
complex matching techniques.

The procedure from Fig.2(c) to Fig.2(d) is to
merge the features by removing the redundant frames
according to the SC. In the ideal cases, only one
frame of the stable state is necessary to represent the
NoteSet; other frames are redundant and can be re-
moved. In this way, only a small percentage of the
frames remain; both the storage and computation are
reduced. In addition, much of the tempo variation is
removed, thus complex DP algorithms are unneces-
sary, and a simpler algorithm can be used for the fea-

ture sequence match.
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Fig.1 Music signal property.

When spectral similarity is adopted as the criterion
for CBMR, the spectral profile is the most important.
A popular parametric spectrum is cepstrum and
MFCC has special properties suitable for CBMR.
MFCC is insusceptible to pitch shift and requires less
storage compared with STFT. MFCC not only con-
cisely represents the spectral structure it also has a
special property due to its resolution capability. The
low order MFCC is the low frequency components of
the DCT, and reflects the basic spectral profile, which
roughly stands for the music score; the high order
MFCC is the high frequency component of the DCT,
and reflects more details of the energy distribution in
the different Mel bands. In other words, the first few
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MFCC coefficients gives an outline of spectrum; the
rest of high order MFCC coefficients increases the
accuracy of the spectrum. Based on this property, the
retrieval can be further accelerated with two-step re-
trieval by a pre-filtering method.

3. SC-based Music Retrieval Model

Given the above discussions, we present a fast and
efficient music retrieval model. In our model, we de-
fined the following parameters:

s:  STFT of the i"" frame.

M :  MFCC of the i" frame.

p,,-  correlation between s and s, .

p. . Spectral correlation threshold.

3(p,): the compression ratio of the frames when
the SC threshold is setto p, .

L: MFCC order.

L:  number of low order MFCC used for
pre-filtering in the first step in Fig.2.

S: survive rate of the retrieval, the ratio be-
tween query output and all the references
in the database.

S, survive rate of the pre-filtering.

S,:  survive rate of the second step retrieval.
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Fig.2 Acoustic music retrieval model.
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Our music retrieval model is shown in Fig.2. It
contains the following modules:

Feature extraction: The query music is
re-sampled and framed. For each frame the short
time-spectrum S, is calculated. Then the SC p,

and MFCC feature M, are computed.
Frame merge: Out of the continuous frames with
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an SC bigger than a certain threshold, for example
p,, =0.7, only the first frame is kept. Fig.3 gives an

example of frame merge. For the query music, frame
1 and 2 are spectral similar, so the two frames are
merged to one frame s1. By merging the neighboring
spectral similar frames, only few of the frames re-
main, which depends on the SC threshold p, . The

percentage of the remaining framesis &5(p,,) .

Pre-filtering: in the first step, only the first
L, -order MFCC of the query is used to roughly

choose some candidates, removing most of the
unlikely references in the music database. Merely a
small percentage S, of reference music survives as

the candidates, and constructs a new database. In the
second step, with all the L -order MFCC coefficients,
a percentage S, of target music is obtained from the

small database.

Feature sequence match: the merged query se-
guence is matched against the merge one of the ref-
erence melody at different time shifts. At a specific
time shift, each frame in the query is compared with
several neighboring frames in the reference music so
as to consider the remaining time variation effect.

4. Retrieval Model Analysis
By merging the adjacent spectral similar frames,
the storage is reduced to the percentage of 5(p,) .

The other advantage of frame merge is that most of
the tempo variation is mitigated. In Fig.3 the query
and reference music have different timing where the
same notes (for example, 3", 4™ and 5" frames in the
query and 4™ and 5" frames in the reference) have
different length. However, by merging frames, the
redundant information is removed. If the two se-
guences have the same score, it is reasonable that the
merged sequences almost have the same timing, that
is, the tempo feature of the merged query is nearly
the same as that in the merged reference music.
Merging the similar frames decreases the computa-
tion requirement. Assume that the average number of
frames of all the references is R, and that of query
is Q. The average computation for DP, Cg,, is

given in Eq.l. By merging frames, the average
number of remaining frames for the query and refer-
ences is J(p,)-R and 5(p,)-Q respectively. The
corresponding computation, C,, , is given in Eq.2.
With the two-step retrieval, in the pre-filtering stage,
L, MFCC coefficients are used, and S, percentage
of references survive; in the second stage, the surviv-
ing references are searched with L MFCC coeffi-
cients to get the best targets. The total computation of
the two stages, C,., is givenin Eq.3

Copr =R-Q-L 1)
Ceu =[9(pn) Rl [0(p,)-Ql-L (2

grg

Cer =[6(py)-RI-[6(py)-Ql- L
+[6(py) R-S,]-[6(p,)-Q]-L (3)

=[6(py)-R1-[6(py)-QI-[L /L+S]]

Due to pre-filtering, the total computation in Eq.3
is decreased by a factor F,. =L, /L+S, compared
with Eq.2. Reducing either L, or S, can decease
the computation.

5. Experiments and Results

The experiments are conducted on the acoustic data-
base with both monophonic and polyphonic melodies.
Our music database consists of 166 melody pieces
and is generated from Chinese folks (44 pieces from
12-Chinese-girl band) and western instruments sound
(122 pieces performed by different instruments).
Each piece is segmented into 60-second-long melodic
slip. Query melodic samples are segmented into 6-8
seconds long. However, the query samples are the
different versions of the reference database, that is,
query music and reference melodies may have dif-
ferent tempo and pitch shift. In the simulation, gener-
ally L=8, L =4, S =02, and p, =0.7 except
especially pointed out.

HHUSIC Wave

Fig.4 Spectral correlation and frame merge, p, =0.7

(No Word melody from 12-girl band).
Figure 4 shows the SC (p) of the frames for a

relatively simple melody, where most of the adjacent
frames have a bigger SC than the SC threshold. Out
of the total 344 frames, only 4.9%, 17 frames are kept.
When music score becomes more complex and the
spectral features changes frequently, more frames are
kept. However, still most of frames are merged.
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Fig.5 Normalized feature storage.
Figure 5 shows the normalized feature storage

S(p,) with respect to SC threshold p, . When
Py =04, S(p,) is less than 10%. 5(p,) mono-


島貫
テキストボックス
－7－


tonically increases as p, does. When p, reaches
1.0, no frames are merged and &(p,) equals 1.

From the experiment, we approximate the relation
between the storage and the SC threshold p, as

below:

— 9,
5(py) =0.0001e" +0.1085 (0< p, <1) (4)
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Fig.6 Normalized average computation.

Figure 6 shows the computation with respect to
P, - The upper curve stands for the computation with
only frame merge, stated in Eg.2; and the bottom
curve is the computation with both frame merge and
pre-filtering, stated in Eq.3. The computations are
normalized by the one given in Eqg.1. When calculat-
ing Eq.2 and Eq.3, &(p,) Iis the experiment result
described in Fig.6. The computation in both Eq.2 and
Eq.3 is proportional to [§(p,)]*, SO the computation

reduction is very efficient. At
S(p,)=0.195, and the computation is reduced to
0.038, nearly 1/25 of the original computation.
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Fig.7 Top-4 retrieval ratio of STFT and MFCC with
respectto p, (without pre-filtering).

Though the pre-filtering method is only applicable
to MFCC, the frame merge technique is suitable for
both STFT and MFCC. Figure 7 verifies the top-4
retrieval ratio of STFT and MFCC with respect to
different p, . The pre-filtering method is not used. It
is obvious that both STFT and MFCC work fairly
well when p,, isin[0.6, 0.8].

Figure 8 gives the retrieval ratio for both top-4 re-
trieval and top-1 retrieval under different p, . For
most of the cases, the retrieval ratio with pre-filtering
is almost the same as that without pre-filtering for
both top-4 and top-1 retrieval. When p,, is smaller

0 8o

than 0.7, the retrieval ratio increases as p, does.
The retrieval ratio is almost unchanged when p,, is
within [0.7,0.8]. As p, increases further, the re-
trieval ratio for both top-1 and top-4 retrieval de-
creases. This is due to the fact that as p,, gets very
big, most of the feature frames are kept, and the sim-
ple feature match method adopted in our proposal can
not deal well with the remaining time variation. Un-
der all cases, top-1 retrieval result is worse than top-4
result, however, it still gives good result when p, is
within [0.7, 0.8].
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Fig.8 Top-4 and Top-1 retrieval ratio of MFCC with
respectto p, (S,=02, L =4).

From Fig.5-8, both the storage and the computa-
tion increase as p,, does. The retrieval ratio reaches

its maximum when p,, lies within [0.7, 0.8]. When
the SC threshold p,, is set to 0.7, the pre-filtering
MFCC order L, is setto 4, and the surviving ratio is

0.2, the system can achieve almost the highest re-
trieval ratio with little storage and computation.

6. Conclusion

In the article we have analyzed music signal property,
explained the reason of tempo variation, and argued
that the adjacent frames tend to have strong spectral
correlations. On these basis, we have proposed a
Query-by-Example music retrieval model, which has
shown the following merits: (1) it removes the spec-
tral redundancy and in turn reduces the feature stor-
age of the reference music in the database; (2) both
the query and the reference melodies have a short
feature sequence, which improves the retrieval speed;
(3) most of the tempo variation is removed, thus a
simple feature sequence match method can be used;
(4) relying on the characteristic of MFCC, two-step
retrieval further speeds up the whole retrieval.
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