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Mining of Frequent Sequential Patterns with Minimum Cover
on Variable-Length Wildcard Regions

TomoYUKI KATO,* HAJIME KITAKAMI, " MAKOTO TAKAKI,!
KEINcHI TAMURA,* SusuMU KUROKI'" and YASUMA MORI

We propose a method for extracting frequent sequential patterns with minimum variable-
wildcard regions, in order to extract candidates of a motif from amino acid sequence databases.
A scope database defined by each frequent k-length pattern is constructed by the extension
of Projected Database that generate frequent (k+1)-length patterns from a frequent k-length
pattern in pattern growth approach. Moreover, we report experimental results that our ex-
tended method was evaluated using a dataset that includes the Leucine Zipper motif.

1. Introduction

We relate to the analysis of sequence databases
in the field of bioinformatics. The focus in the field
has been on extracting the candidates of motifs
from the sequence databases. Each one of these
motifs that has been discovered by biologists has a
particular sequence pattern related to one function
of some protein. The motifs discovered by many
biologists appear in PROSITE [1] [2] and Pfam 3]
and are regarded as a protein function that has been
conserved in the process of molecular evolution.

We have proposed a pattern extraction method
[5] [6] based on the prefix-projected pattern-growth
approach [4]. The literature (5] reports the fast
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extraction of frequent patterns with fixed-length
wildcard regions in the application of a projected
database. In the pattern-growth approach, the
extraction of frequent (k+1)-length patterns is
achieved by adding all pairs of a wildcard region
together with an alphabet letter to a frequent k-
pattern. The literature [6] reports the extraction
of variable-length wildcard regions instead of the
above fixed-length wildcard regions in the same ap-
proach.

However, new problems arise in the variable-
length pattern-extraction method.
(1) Variable-length wildcard redions without mini-
mum cover
Any variable-length wildcard region in the frequent
pattern does not represent the minimum cover for
occurrences corresponding to the evidence of the
frequent pattern.
(2) Redundant frequent patterns
The redundant frequent patterns, in which the
wildcard regions located at the same place are dif-
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ferent from each other, are extracted. For exam-
ple, if two different wildcard regions, =(i;,51) and
x(32,42), in two patterns, {A-z(i1,51)-F} and (A-
x(i2, j2)-F}, have a relation [i1, j1]Cliz, jz], the for-
mer pattern must be removed because it is redun-
dant for the latter pattern.

In order to solve the problems, we propose a
new methodology for extracting non-redundant fre-
quent sequential patterns that are constructed by
variable-length wildcard regions with the minimum
cover in the prefix-projected pattern-growth ap-
proach.

2. Definitions and statement of the
problem

A sequence database is denoted DB, and
DB={l,tz, - “in}-
sented by the form (sid, s;), where 1<i<n, ‘“n"
is the number of elements, and “sid” is a se-
The set of sequence identi-
fiers in the sequence database is represented as
0={1,2,3,---,n}. Each s,q is defined as a sequence
for which the sequence identifier has the value of
sid. The j** letter from the head of the sequence
Ssid is represented as 8sglj), where 1<j<||sq-
Table 1 represents a DB={t),ts,t3,t4,t5} and
1={1,2,3,4,5}, where ty= (1, FKYAKWLCDN}),
1,=(2,SFVKTAEHNQC), t3=(3, ALR), ty=(4,
MSKPL), and t5=(5, FSKFLMAWEH). When
we realize that the character “A” is included in

Any element t; is repre-

quence identifier.

such elements as i), 2, 3 and s, we can then
find s)[4]=s2[6)=s3[1]=55[7]="A”". If the number
of alphabet letters for a sequence has a value of k,
the sequence is called a k-length sequence. For ex-
ample, the first sequence in Table 1 is a 10-length
sequence.

Finite sub-sequences composed of a letter of the
alphabet and the wildcard letter (hereafter, called

Pl ADRMNT—IR—X
Table 1 An example of a sequence database

sid | sequence
FKYAKWLCDN
SFVKTAEHNQC
ALR

MSKPL
FSKFLMAWEH
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the wildcard) are called a string, where both ends
of the string have to be letter of the alphabet. The
wildcard is a sign that shows an arbitrary letter of
alphabet. If the number of letters in a string has
the value of k, the string is called a k-string. For
example, a string (F*K*A) including the wildcard
letter is a 3-string and a string (FLM A) without
the wildcard letter is a 4-string.

2.1 Relationship between a pattern and

occurrence

The pattern is a form which represents a set of k-
strings occurring more than one time in sequences
of the database DB, where k>1. The set of k-
occurrences is defined as a ternary relation {(k-
string, i, j)|k-string ezisting in the j** position,
(i,s)€DB}. For a;€) and 1<i<k, a k-length
pattern (pat*) with k letters of the alphabet 3~ is
a way to represent a set of k-occurrences and has
the following form:
{pat*)=
{e1-z(ir,51)-a2-3(i2,42) - - (Be-1,dk-1)-ax) (1)

The symbol z(%, 7) in expression (1) denotes that
the number of wildcard signs in the wildcard re-
gion has a range from i to j, where 0<i<j. The
“ gymbol means that the next element is contin-
ued. Sometimes, this symbol is omitted. If i<j,
then this region is called a variable-length wildcard
region. If i=j, it is the same as a fixed-length wild-
card region, and this region can be represented as
z(i). The expression (1) is equal to ‘*’. Henceforth,
e=j—i is called the error count of region x(, j). It
is clear that x(i, ) can be represented as z(i,i+ ¢€).
If all wildcard regions included in a k-pattern are
fixed-length wildcard regions, it is called a fixed
pattern or rigid pattern: If a k-pattern has at least
one variable-length wildcard region, it is called a
variable-length pattern.

2.2 Statement of the problem

Our goal is to extract all the frequent sequen-
tial patterns from a sequence database that satisfy
the input parameters, such as the minimum sup-
port count (denoted mini_sup), the maximum wild-
card count (denoted wcmaz), and the maximum er-
ror count (denoted €maz), given by the user. The
maximum wildcard count, Wemax, is defined as the
maximum length for each of the wildcard regions



included in the frequent patterns, where any wild-
card region x(¢, j) in the frequent patterns satisfies
the relation 0<i<wcmar. When the set Pi of fre-
quent k-patterns has m elements, Py is shown as
follows:
Pr={(patf):cnty {patk):enta, - - (patk, ):cntm } 2)
where (pat*):cnt denotes a k-pattern (pat®) with
a support count, “cnt”. When we define a set
P as all the frequent patterns extracted from
the sequence database, the set P is shown as
PUP;U...UP,, where q corresponds to the maxi-
mum length of the extracted frequent pattern.

3. Existing method

The existing method finds the wildcard region
together with one letter added to a frequent k-
pattern from the sequence database whenever a set
of the (k+1)-pattern is generated by the growth
of a frequent k-pattern. The letter of the alpha-
bet found by the method exists between the start
and end scan positions in each sequence including
the region. In order to avoid scanning useless sub-
sequences, the start scan position must be the po-
sition next to the place where the rightmost letter
of the frequent k-pattern is in the sequence data.

It is convenient to make the projected database
of each k-pattern to find the start scan position ef-
ficiently for the scanning. The projected database
PDB((pat*)) for k-pattern {pat®) is as follows.
PDB({pat*))= {(i,7)|The rightmost letter o f
each k-string included in the set of occurrences
represented as {pat®) is located at the (j-1)**
position of s;€ DB, 1<5<| s:(|} (3)

When we apply the variable-length pattern-
extraction method [6] to the sequence database
shown in Table 1, we can obtain the enumeration
tree shown in Figure 1, where mini_sup, wcmax,
and emar have a value of 3.

Consider the extraction of (F-z(0,3)-K-z(1,3)-
A) in Figure 1. The variable-length wildcard re-
gion between (F) and (K is represented as z(0, 3),
which does not represent the minimum cover for the
set of 3-occurrences, {(({F-x(0)-K-x(1)-A},1,1),({F-
x(1)-K-x(1)-A},2,2),({F-x(0)-K-x(1)-A),5,1)}. The
minimum variable-length wildcard region between
them must be x(0, 1), which is deduced from s, sz,
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Fig.1 Patterns extracted by variable-length pattern-
extraction method
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and s5 in Table 1. Thus, the projected database
does not have any capability to deduce the mini-
mum variable-length wildcard region between (F)
and (K) when both 2(1,3) and (A) are extracted
by the pattern growth of (F-z(0,3)-K} using the
database.

In addition, when we focus on the variable-length
wildcard regions between (F) and (K} in Figure
1, the number of wildcards between {F) and (K)
in 2-pattern including the both is 0 and 3, and
these wildcards exist on the 2-occurrences found
from s, s2, and s5. In other words, the minimum
variable-length wildcard region is (0, 3). A region
{F-z(1,3)-K) in Figure 1 is redundant to the region
{F-z(0,3)-K).

4. Proposed method

The construction of a scope database is being pro-
posed as a solution to the previously stated prob-
lems in the prefix-projected pattern-growth ap-
proach. When the set of (k+1)-patterns are gen-
erated by the growth of a k-pattern, all the mini-
mum and non-redundant wildcard regions included
in the (k+-1)-patterns and their support count can
be computed from the scope database defined by
the k-pattern. The scope database defined by a k-
pattern (pat*) is defined as follows:
SDB({pat'},[r, r+emaz])=
{(nil, i, j,we,si(jnew])| One letter of (pat') is
located at (j-1)'* position from the head of
$;€DB, weE[r, r+€maz|, Jnew=j+we, and
1<5<]lsill, Fnew<lsill} ()
SDB((pat"),[r, 7'+€mar])=
{(Listk i, jneat Wenezt 8i[inew])| (Listh~1,4,5,we,0)
€SDBa({pat* =), [r, r+€maz]), List*=Append
(List"",[wc]), Wenezt €[r, T + €maz), 8;€DB,
jne.tt=j+wc+la jnew=jnczt+wcnezt: ISJ.S"&'",



Fnext <|lsill, and fnew<|is:|l} ()
where k>2, (pat¥)={pat*~'-z(r,r+¢€)-a), e<emar,
and Append(X,Y) indicates adding list ¥ to list
X.
SDBa({pat*),[r, r+€maz])=
{(List* i,5,we,a)}(Listk i,5,we,a)eSDB({pat®),
[r, r+€maz])} (6)
List! is an empty list because a 1-string does not
have an adjoined letter. For k>2, List* consists of
(k-1)-elements, and each element stores the num-
ber of wildcards included in each of (k-1) wildcard
region. The (k-1)-elements in List* are ordered by
the address located in the sequence. For example,
List? of 3-string {(F* K***A) is represented as |1, 3].

The scope database SDB,({pat*),[r, +€maz))
constructed from both the frequent k-pattern
(pat*) and the sequence database includes the set
of (k+1)-occurrences corresponding to the evidence
of the (k+1)-pattern with the rightmost letter a.
Therefore, the scope database defined by the min-
imum variable k-pattern (pat®) is useful in find-
ing all minimum variable-length wildcard regions
located in (pat**?) together with one alphabet let-
ter a from the range [r,7+€maz], starting at the po-
sition next to the rightmost letter of the variable k-
pattern (pat*) whenever we extract variable (k-1)-
patterns by the growth of the variable k-pattern
(pat®).

4.1 Operation of the scope database

To make all {pat**!) from (pat*), it is necessary
to make (pat**') by using the scope database con-
structed from (pat*). We prepared one operation
for the construction of the scope database and three
operations for the use of one. We describe each op-
eration as follows,

(Operationl) Construct the scope database
SDB((pat*}, [r,r+€maz]) from the expressions
(4) and (5) when a wildcard count “r” as an in-
put parameter of the operation is selected from
[0, wemaz).

(Examplel) Consider the application of this op-
eration to Table 1, where mini_sup = 3, Wcmaz
= 3, and €maxr = 3. For k& = 1, the set of fre-
quent 1-patterns is {{A):4, {F):3, (K):4, (L):4,
(5):3}. If we then set the wildcard count “r”
to 0 for extracting frequent 2-patterns with the

prefix {F), the scope becomes [0,0+3]. There-
fore, the scope database of the 1-pattern (F} is
as follows:

SDB({F),[0,3])={
(nil,1,2,0,(K)),(nil,1,2,1,{Y)),(nil,1,2,2,(A)),
(nil,1,2,3,(K)),(nil,2,3,0,{V)),(nil,2,3,1,(K)),
(ni1,2,3,2,(T)),(nil,2,3,3,{A)),(nil,5,2,0,{S}),
(nil,3,2,1,{K)),(nil,5,2,2,(F)), (nil,5,2,3,(L)),
(ni0,5,5,0,{L}), (nil,5,5,1,{M)), (nil,5,5,2,{A)),
(nil,5,5,3,(W))} 1)

(Operation2) Generate all candidate (k+1)-
patterns {pat**!) corresponding to the child
node by the growth of the k-frequent pattern
(pat®) corresponding to the parents’ node of
the enumeration tree. Let us consider the
selection of the value of “r” from [0, wcmaz)
in ascendant order. In order to compute the
k** wildcard region included in the candi-
date (k+1)-pattern with the rightmost letter
a from SDBq({pat*), [r,r+€maz]), We begin
to compute the minimum value rm, and max-
imum value rmaz for {we | (List,i,jwea) €
SDBO((patk)‘ [7'9r+€max])}~ If rmin = r, we
generate the candidate (k+1)-pattern (pat*-
2(Tmin, Tmaz)- «). After that, we check the
redundancy between the (k+1)-pattern and
those (k+1)-patterns with the same a which
have already been extracted from the same k-
pattern (pat). If the (k+1)-pattern is redun-
dant with the other (k-+1)-patterns, it is re-
moved. If 7min>r, we do not generate the can-
didate (k+1)-pattern.

(Example2) Consider the application of this op-
eration to SDB({F),|0, 3]) under the same con-
ditions as in Example 1 for r=0. We can ob-
tain rmin=0, rmax=3 from SDBk ({F),[0,3])=
{(nil,1,2,0,(K)),(nil,1,2,3,(K)),(nil 2,3,1,(K}),
(nil,5,2,1,(K})}. Thus, we can obtain a can-
didate 2-pattern (F-z(0,3)-K) with the prefix
(F), a8 T'min=r=0 and rma-=3.

(Operation3) Compute the support count, “cnt”,
of each candidate (k+1)-pattern, (pat**?) us-
ing the set SDBa((patk),[r, r+€maz]) that is a
subset of the scope database SDB({pat*),[r, 7+
€maz]). The support count of {pat*+!} = (pat*-
z(r,r+€)-a) is computed by enumerating all



of the elements that belong to the set {i|
(List,ijwe,a) € SDBa({pat®), [r,r+emas))}
of identifiers included in SDBq((pat*), [r,r+
€maz)). If the support count of {pat**') satis-
fies the minimum support count given by the
user, (pat**!) becomes the frequent (k+1)-
pattern.

(Example3) Consider the application of this op-
eration to SDBk((F),[0,3]) under the same
conditions as in Example 2. We can ob-
tain the set {1,2,5} of identifiers included in
SDBg({F}),[0,3]) in order to extract the candi-
date 2-pattern (F-z(0,3)-K) with the variable-
length wildcard region z(0,3) and the letter
“K” from Table 1. This results in support
count = 3 and the frequent 2-pattern (F-
z(0,3)-K):3 can be extracted.

(Operationd) For k>2, when a frequent (k+1)-
pattern (pat®*!) with a prefix (pat*) is rep-
resented as (pat*-z(r,7+¢)-a) and €>emac,
each variable-length wildcard region x(i,j)
that exists in k-prefix (pat*) of (pat**!) is
re-computed by using List* of SDBq((pat®),
[r,7+€maz]) and looking for the minimum
variable-length wildcard region z(i’,5’). Af-
ter it re-computed, the relation of j'<j is ap-
proved to the variable-length wildcard region.
If as many as one variable-length wildcard re-
gion that approves the relation of i’'#i exists,
to prevent redundant regions from being gen-
erated, remove the (k-+1)-frequent pattern.
(Exampled) When a frequent 3-pattern (F-
z(0,3)-K-z(1, 3)-A):3 is generated from SDB 4
({(F-z(0,3)-K),[1,4]) = {((0],1,3,1,(A)),([1],2.5,
1,{4)),([1],5:4,3,{4))} of Example 1, we can
update the variable-length wildcard region
z(0,3) of the 3-pattern using Operation 4.
Each of these lists, [0], [1], and [1], included
in SDBa((F-z(0,3)-K),[1,4]), represents the
number of wildcards placed between two let-
ters, “F” and “K”. Therefore, the first wild-
card region x(0, 3) in the frequent 3-pattern {F-
x(0,3)-K-z(1, 3)-A):3 is updated to =(0,1). As
a result, we can obtain a minimum 3-frequent
pattern {F-z(0, 1)-K-z(1, 3)-A):3.
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Fig.2 Patterns extracted by scope database

5. Performance evaluation

The performance evaluation was achieved by
comparing the existing variable-length pattern-
extraction method with the proposed method us-
ing the scope database. The computer environment
used for the evaluation was Intel PIV-2.4GHz, with
2GB memory, 2GB SWAP memory, 74.5GB HDD,
and Microsoft Windows XP Professional as the op-
erating system.

The dataset used in the performance evalu-
ation was provided by PROSITE and includes
the Leucine Zipper motif. @ The dataset has
PS00036 as a registration number and 125 se-
quences. The form of the Leucine Zipper mo-
tif is ([KR]-z(1,3)-[RKSAQ]-N-z(2)-[SAQ)(2)-z-
[RKTAENQ]-z-R-z-|RK]). The input parame-
ters to extract the above motif from this sequence
database were the minimum support rate, Wemaxr,
and €maz. The first parameter had values of 37, 36,
30, and 25 percent as the minimum support rate.
The later two parameters had a value of 2. Table 2
shows the results of the evaluation. Table 2 shows
the number of frequent patterns extracted by the
existing method and the proposed method for each
minimum support rate.

It is clear in the table that the extracted frequent
patterns extracted by the proposed method were
fewer than those extracted by the existing method.
One reason is ‘that the proposed method never
extracted any patterns with redundant variable-
length wildcard regions that were extracted by the
existing method. Another reason is that the pro-
posed method removed the redundant patterns pro-
duced by minimizing variable-length wildcard re-
gions in the pattern-growth approach.

Moreover, the existing method broke off the com-
putation due to a lack of memory when the support
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Table 2 Calculation result of a dataset that includes the Leucine Zipper motif

Comparison item / Minimum support rate

37% 36% 30% 25%

Existing Method

Number of frequent patterns | 56821 | 64182

Proposed Method

Calculation time (sec) 11.7 12.8
Number of frequent patterns | 51739 | 57540 | 203077 | 700845
Calculation time (sec) 92.6 101.5 468.4 2378.0

ratio was under 36 percent. Since the proposed
method extracted fewer patterns than the exist-
ing method, it succeeded in extracting the frequent
patterns until the support rate of 25 percent was
reached.

The evaluation yielded the following results. The
proposed method can extract the patterns with
minimum cover and non-redundant wildcard re-
gions and frequent sequential patterns using a
smaller support count than that required by ex-
isting method. Moreover, the proposed method re-
sulted in a high capability to extract non-redundant
sequential patterns including minimum variable-
wildcard regions.

6. Conclusion

In this paper, we have proposed a method for
extracting frequent sequential patterns with mini-
mum and non-redundant variable-wildcard regions
in order to extract candidates of a motif from the
sequence databases.

A scope database for each frequent variable
length k-pattern is defined as an extension of a pro-
jected database generates frequent variable length
(k+1)-patterns from a frequent k-length pattern in
the prefix-projected pattern-growth approach. The
scope database for a frequent k-length pattern con-
sists of not only the existing projected database of
the pattern but also the range of the scan and oc-
currences of the pattern.

The prototype has been applied to the evaluation
of a dataset of sequences that included the Leucine
Zipper motif. Our method had a higher capability
to extract sequential patterns including both mini-
mum and non-redundant variable-wildcard regions
than the existing method.
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