2007—MPS—65
200776725

FEEEA WL B 14)

IPSJ SIG Technical Report

FAZ T Uy RRETOD
INFTaTATDa—Y > 7iehir3
JadoBnEgLE <Y a TEEERE

W A BEA SR R B —t, WH B, IR

T RBR%E K2R HIREHEMIER T560-8531 KBRS i 3w 10T 1-3
T AW E N B At BHEWPIZERT T661-0974 EIR BIRTHE F3F3-11-20

WEEW - 125 —Fy RS NG RO ERORBAENERNATETAY by 77U 1B
EREOI-—FTHHT 256, REHEAOEBZEVEETTNT LML VLD, &H5
BASNEFHERBDOIDRENTD 3 7D, BEBAISHEFHERONIVWD 3 THRICETLTLE
S5TE(adDBEVEL) BHB5. FRXTE, KEFHEAPBNIZEOLIREBMKLLES &b,
ZOEBOTHOLERELIC, Pa7OBRRLIRLTECSBRNWIEERIETEIRA T a—U
URTHETHD I EZRT. TLTVa7OBVELNEISTY, 2D, KREHENOMEENIE
WRT D a—U TP hd) XLERETS. #RETNITU LR, HRERIRNWTINITYLLE
BIZERSOMEEERT S 2 & 2 HEHMIC L DRT.

Priority Control to Avoid Job Overtaking in
Multiple Job Scheduling for a Desktop Grid

Hisaya Minet, Noriyuki Fujimotot, Ryuichi Higashit,
Masahiro Susukita:, Kenichi Hagiharat

T Graduate School of Information Science and Technology, Osaka University
1-3, Machikaneyama, Toyonaka, Osaka, 560-8531, Japan

¥ Power Engineering R&D Center, The Kansai Electric Power Co., Inc.
3-11-20, Wakaouji, Amagasaki, Hyogo, 661-0974, Japan

Abstract - Desktop grid computing is computation which uses the spare computing power of many PCs over the
Internet. This spare computing power varies over time and its accurate prediction appears to be difficulz.
Therefore, in a multi-user desktop grid, a job submitted by some user may finish earlier than other user’s jobs
with smaller sizes and earlier submission times. We call such an earlier finished job an overtaking job. We deem
any schedule with an overtaking job to be unfair. This paper proposes a scheduling algorithm that never results in
any overtaking jobs, and does not require any prediction regarding how the spare computing power varies over
time. The proposed scheduling algorithms archieve the nearly equal performance in spite of the restriction that

they never result in any overtaking job.

1 Introduction

Desktop grid computing is computation which
uses the spare computing power of many PCs over the
Internet. As the Internet has grown more widespread
and fast, desktop grid computing has attracted
attention, and many projects have obtained good
results by using it.

For grid users, the time interval from job
submission to job completion is one of several
important factors of a job schedule. Furthermore, in a
multi-user environment, fairness among users is also
an important factor. In the desktop grid environment it
is difficult to accurately predict variation of the spare
computing power. Any scheduling algorithm without

due particular consideration may cause undesirable
situations for some users such as: (1) a job submitted
by one user finishes earlier than a smaller, earlier
submitted job from another user (we call such an
earlier finished job an overtaking job); (2) a job
submitted by some user waits for a long time before its
computation is started; (3) jobs submitted by some
users are apt to be assigned to lower performance PCs.
In this paper, we propose a scheduling algorithm such
that situation (1) never occurs. This algorithm does
not require any prediction regarding how the spare
computing power varies over time. That is, we solve
one of the above listed unfair situations. Our
algorithm can be regarded as a technique to control
job priority dynamically.

2 A Grid Scheduling Model

A task is defined as a minimal unit for scheduling.
A job is a set of independent tasks. In this paper, every
job is independent of any other job. A job is submitted
to a desktop grid by a user. This paper considers the
situation where multiple users submit their jobs to a
single desktop grid.

The size of a task is the number of instructions in
the task. The speed of a processor is the number of
instructions computed per unit time. A grid is
beterogeneous, so processors in a grid have various
speed by nature. In addition, the speed of each
processor varies over time due to the load by the
original users in public-resource omputing. That is, the
speed of each processor is the excess computing power
of the processor which is not used by the original users
and is dedicated to a grid. Processor speed may be zero
if the load by the original users is very heavy or the
processor is powerd off.

3 Related Works

As a related job scheduling problem, one such that
each job requires its own number of processors has
been well studied [1-5]. For the problem, there exist
several known algorithms such as FCFS (First Come
First Served), LIF (Largest Job First) [6], SIF
(Smallest Job First) [7], Scan [8], Backfilling [9, 10],
FCFS-fill [11], LSF-RTC [9], FCFS/First-Fit [5, 11],
LJF/First-Fit [5], and SIF/First-Fit[5]. However, in this
paper, any job does not require the number of
possessed processors. Therefore, these enormous
existing algorithms do not directly compete against our
algorithms.

This section gives a brief account of the first-in
first-out (FIFO for short) algorithm and Round-Robin
algorithm. Both algorithms are simple dynamic
scheduling algorithms that do not require prediction of
the spare computing power or information on jobs and
tasks. In Section 5, these algorithms are compared with
the proposed algorithm. For a detailed explanation of
FIFO and Round-Robin, please refer to the full version
[13] of this paper. In both the FIFO and Round-Robin
scheduling algorithms, overtaking jobs can occur.

4 The Proposed Algorithms

We propose two algorithms, the FIFO based
algorithm and the round-robin based algorithm. Both
algorithms use job sizes and task replication, but they
do not require any prediction information about
available processor power.

The FIFO based algorithm selects jobs in
ascending order based on submission time. Then, the
algorithm allocates tasks of the selected job in an
arbitrary order to processors one by one. On the other
hand, the round-robin based algorithm selects jobs in a

round-robin manner. Then, the algorithm allocates
tasks of the selected job also in the round-robin manner
to processors.

However, if the following two conditions C1 and
C2 hold for a selected task T, our algorithm defers
allocation of T until neither condition holds, where J is
the job which includes T and where J” is a job which is
smaller than J and is running at the submission time of
J:

C1: J has at most B unallocated tasks.
C2: ¥ is still running when T is selected.

We call the above priority control technique task
deferment. If allocation of T is deferred, then T is
called a deferred task. The above B is called a task
deferment bound. Notice that task deferment prevents
job overtaking without any prediction of how the spare
computing power varies over time.

Our algorithms allocate a task to more than one
processor if the first instance of the task was allocated
to a slow processor and the task is again selected to for
allocation. That is, in such a case, our algorithms
replicate the task. We call this technique task
replication. Our algorithms may replicate a task more
than once. The first instance is called an original of a
task. Replicated tasks are called replicas of a task. The
reason why our algorithms use task replication is that a
replica may be completed faster than the original.

In the case of a single job with tasks of equal
length, it is proved that task allocation in the round-
robin order reduces the consumed spare computing
power of a whole schedule [14]. Hence, our algorithms
also select an allocated task in the round-robin order.

5 Simulation

First, we performed the preliminary simulation to
determine whether the FIFO and Round-Robin
scheduling algorithms result in overtaking jobs. In the
preliminary simulation, we confirmed that overtaking
jobs can occur in FIFO and Round-Robin scheduling
algorithms. For a detailed explanation, please refer to
the full version [13] of this paper.

Next, in order to evaluate the proposed policies
we performed a simulation. In the simulation we did a
total of 200 trials. In the remainder of this section, we
illustrate the detail of the simulation.

5.1 Parameters

In the following section, we describe each
parameter (Table 1) of our simulation.

Algorithms In the simulation, we consider the
following algorithms: Round-Robin; FIFO; Round-
Robin with the proposed policy; FIFO with the
proposed policy.

Furthermore, for each algorithm with the
proposed policy, we consider four task deferment

bounds: 1, 2, 4, and 8.
Thus, we consider ten algorithms.

PCs We assume that the grid consists of 32 PCs. We
assume that PCs in offices and research institutions are
used for three years. Then, based on Paranhos et al.’s
performance model [15], and taking Moore's law [16]
into consideration, we set the ratios for the peak-
performance of the PCs at 1, 2, and 4.

Each PC has one processor, and during each time
step the processor switches between low-load state and
high-load state with a certain probability as shown in
Table 3.

Jobs and Tasks A job consists of 128 tasks with
hetero generous task lengths. All the jobs are the same
construction.

32 jobs are submitted at regular intervals, we let
the interval set 500, 1000, 2000, and 4000.

Performance Measures To evaluate each algorithm,
we make the following measurements: computation
time of a job; waiting time of a job; total time of a job;
standard deviation of total time of a job.

Computation time of a job is the time from when
the first task of a job starts computation to when the
last task of the job finishes computation.

Waiting time of a job is the time from when a job
is submitted to when the first task of the job starts
computation.

Total time of a job is the time from when a job is
submitted to when the last task of the job finishes
computation. This is the sum of computation time and
waiting time.

These three measures are to evaluate each
algorithm as a scheduling algorithm.

The other measure, standard deviation of total
time of a job is used to evaluate how job submission
time affects total time.

5.2 Results

In the figures 1a through 4b, the vertical axis
represents time, and the horizontal axis represents each
algorithm. Standard shows the algorithm without the
proposed policy, and Bound = n shows the algorithm
with the proposed policy where the task deferment
bound is n. Interval = n indicates that the jobs are
submitted every n units of time.

Figure 1a and Figure 1b represent the average
computation time for each algorithm. In FIFO,
regardless of the interval, the average computation time
varies little. This is because the computation time of a
job is not affected by the presence of other jobs. On the
other hand, in Round-Robin, the shorter the interval is,
the longer the average computation time is. This is
because a shorter interval makes computation of
multiple jobs more frequent, and the number of
available processors per time for a job is decreased.

Figure 2a and Figure 2b represent the average

Table 1 Parameters of the simulation

number of jobs 8
job submission interval 500,1000,2000,4000
number of tasks 128
task size 2000000~6000000

(number of instructions) uniformly random

number of processors 32

peak performance of processor
(instruction per unit time
without any load)

10000,20000,40000

transition between
low-load state
and high-load state
with a certain probability

variation pattern of
processor speed

probability of transition
from low-load state
to high-load state

1/1000

probability of transition
from high-load state 1/100
to low-load state

processor speed

at low-load state 95%~100%

processor speed

at high-load state 0%~5%

waiting time for each algorithm. In FIFO, a shorter
interval tends to result in longer average waiting time.
This is because tasks of a job are not assigned until the
tasks of all earlier submitted jobs have been assigned.
On the other hand, in Round-Robin, regardless of the
interval, the average waiting time is negligible
compared to the total computation time. This is
because the computation time of one task is
comparatively short, and the tasks of a job are assigned
early without waiting for earlier submitted jobs to
finish.

Figure 3a and Figure 3b represent the average
total time for each algorithm. In both FIFO and Round-
Robin, the shorter an interval is, the longer the average
total time is. In most cases, the average total time of
FIFO algorithms is shorter than that of Round-Robin
algorithms.

Figure 4a and Figure 4b represent the average
standard deviation of total time for each algorithm. For
shorter intervals, Round-Robin has a smaller standard
deviation. For longer intervals, FIFO has a smaller
standard deviation.

Both the FIFO and Round-Robin algorithms show
no relationship of task deferment bound in regards to
computation time, waiting time, total time, or standard
deviation.

The proposed scheduling algorithms archieve the
nearly equal performance to the standard FIFO and
Round-Robin algorithms in spite of the restriction that
they never result in any overtaking job.

6 Conclusions

We have proposed scheduling algorithms that
never results in any overtaking job and we perform a
simulation to evaluate the proposed algorithm.

In this simulation, we have found the algorithms
with the proposed policy have nearly performance to
the algorithms without the proposed policy. We have
also found the algorithm based on FIFO with the
proposed policy has better performance. Moreover, in
terms of parallel processing of deferred tasks, we have
made the simulations where task deferment bound
varies, but clear tendency do not appear in computation
time, waiting time, and total time.

7 References

(1] H: her, V., Schwiegelshohn, U., Streit, A. and Yahyapour, R.:
Evaluation of Job-Scheduling Strategies for Grid Computing, IEEE/ACM
International Workshop on Grid Computing (GRID2000), LNCS Vol.1971,
pp.191-202, 2000

2] Li, K.: Job Scheduling for Grid Computing on Metacomputers, IEEE
International Paralle! and Distributed Processing Symposium (IPDPS'05)
‘Workshop 4, p.180b, 2005

B3] Feitelson, D. G.: Packing Schemes for Gang Scheduling, In Job
Scheduling Strategies for Parallel Processing, LNCS Vol.1162, pp.89-110,
1996

[4] Feitelson, D. G. and Jette, M. A.: Improved Unitization and

Responsiveness with Gang g, In Job Scheduli for
Paralle] Processing, LNCS Vol.1291, pp.238-261, 1997

[S] Aida, K. Effect of Job Size Characteristics on Job Scheduling
Performance, In Job Scheduling Strategies for Parallel Processing, LNCS
Vol.1911, pp.1-17, 2000

[6] Li, K.and Cheng, K. H.: Job scheduling in a Partitionable Mesh Using a
Two-Dimensional Buddy System Partitioning Scheme, IEEE Transactions on
Parallel and Distributed Systems, Vol.2, No.4, pp.413-422, 1991

71 Subhlok, J., Gross, T. and Svzuoka, T.: Impact of Job Mix on
Optimizations for Space Sharing Scheduler, ACM/IEEE International
Conf on Supercomputing (SC’96), 1996

[8] Krueger, P., Lai, T. and Dixit-Radiya, V. A.: Job Scheduling Is More
Important than Processor Allocation for Hypercube Computers. IEEE
Transactions on Parallel and Distributed Systems, Vol.5, No.5 ,pp.488-497,
1994

[9} Lifka, D.: The ANL/IBM SP Scheduling System, In Job Scheduling
Strategies for Paralle} Processing, LNCS Vol.949, pp.295-303, 1995

[10] Skovira, J., Chan, W., Zhou, H. and Lifka, D.: The EASY -
LoadLeveler API Project, In Job Scheduling Strategies for Parallel Processing,
LNCS Vol.1162, pp.41-47, 1996

[11}. Gibbons, R.: A Historical Application Profiler for Use by Parallel
Schedulers. In Job Scheduling Strategies for Parallel Processing, LNCS
Vol.1291, pp.58-77, 1997.

{12] Graham, R. L., .Bounds on Multiprocessing Timing Anomalies., SIAM
Journal on Applied Mathematics, Vol.17, pp.416.429, 1969

[13] Mine, H., Fujimoto, N., Higashi, R., Susukita, M., and Hagjhara, K.,
Priority Control to Avoid Job Overtaking in Multiple Job Scheduling for a
Desktop Grid, International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA 2007) to appear, 2007

[14] Fuji , N. and Hagih K., .Near-Optimal Dynamic Task
Scheduling of Independent Coarse-Grained Tasks onto a Computational Grid.,
International C on Parallel P ing (ICPP), pp.391.398, 2003

[15] Paranhos, D., and Cirne, W., and Brasileiro, F., .Trading Cycles for
Information: Using replication to Schedule Bag-of-Tasks Applications on
Computational Grids., International Conference on Parallel and Distributed
Computing (Euro-Par), Lecture Notes in Computer Science, Vol.2790,
pp-169.180, 2003

[16] Moore, G. E., .Cramming More Components onto Integrated Circuits.,
Electronics, Vol.38, No.8, 1965

8008
6000 | # Standard
H # Bound=1
i 4000
H @Bound=2"
2000
#Bound=4
o # Bound=8

fntervai=500 Interval=1000 Interval=2000 intervai=4000

30000
25000 & Standard
ﬁggg % Bound =1
10080 % Bound=2
5000 @ Bound=4
0 #30und=8

interval=500 intervai=1000 Interval=2000 intervai=4000

Figure 1a Computation time (FIFO)

Figure 1b Computation time (Round-Robin)

15000
Standard # Standsrd
10000 —— sBound=1
5000 #Bound=2 #3ound=2
®Bound=4 #3ound=4
0 J————
Bound=§ % 3ound=8§
intervai=500 intervai=1000 intervai=2000 Interval=4000 intervai=500 Interval=1000 tnterval=2000 interval=4000
Figure 2a Waitting time (FIFO) Figure 2b Waitting time (Round-Robin)
- 30000
10060 - - e e <andas
oo # Standard 25000 u Standard
#Bound=1 20000
5000 % Bound =1
15000
#Bound=2 -
4000 10000 %Bound=2
2000 — #Bound=4 5000 Bound=4
P =
o % Bound=8] %#Bound=8
intervai=500 intervai=1000 intervai=2000 intervai=4000 fnterval=500 interval=1000 Interval=2000 intervai=3000
Figure 3a Total time (FIFO) Figure 3b Total time (Round-Robin)
10009
B Standard
8200 e # Standard
#Bound=1 5000 #8ound=1
#Bound=2 4000 e = 8ound=2
®Bound=4 .
— oo 2000 ®WBound=4
woil M. nBound<8 | o i - F o
i %Bound =8

intervai=500 istervai=1000 Intervai=2000 Interval=4000

Figure 4a Standard deviation of total time
(FIFO)

interval=500 Interval=1000 interval=2000 intesvai=4000

Figure 4b Standard deviation of total time
{Round-Robin)

