FEFEN SR
IPSJ SIG Technical Report

W

2007—MPS—65
200776725

A Parallel Multistage Metaheuristic Algorithm for VLSI Floorplanning

Takayoshi Shimazu

Shin’ichi Wakabayashi

Shinobu Nagayama

Faculty of Information Sciences, Hiroshima City University
3-4-1, Ozuka-higashi, Asaminami-ku, Hiroshima 731-3194, Japan

Abstract This paper proposes a parallel multistage metaheuristic algorithm to solve the floorplanning problem in
VLSI layout design, in which the sequence-pair representation is adopted as the coding scheme of each chromosome.
The proposed method consists of three stages, and the first and second ones are based on genetic algorithm, and the
last one is based on tabu search. As the stage proceeds, a set of solutions are gradually refined. The proposed method
is a parallel algorithm, running on a PC cluster. The proposed parallel floorplanning algorithm was implemented
using the MPI (Message Passing Interface) library on a PC cluster. Experimental results show the effectiveness of

the proposed algorithm.

1 Introduction

The floorplanning problem is an essential design step
in VLSI layout design, and it determines the coarse
placement of a given set of modules [9]. This problem
is known to be difficult and time-consuming to solve,
since the number of possible placements of modules
increases exponentially as the number of modules in-
creases. Many approaches have been proposed to
solve the problem in a practical computation time [9].
Among those approaches, metaheuristics such as ge-
netic algorithms [5], simulated annealing, and tabu
search {10] are known to be effective to produce a
good solution for the problem.

In this paper, we propose a parallel metaheuristic
algorithm to solve the floorplanning problem in VLSI
layout design. The proposed method is mainly based
on genetic algorithm (GA) [3], and to shorten the exe-
cution time, we introduced parallel processing into it.
Furthermore, to strengthen the ability of local search,
tabu search [4] was combined with GA. The proposed
method consists of three stages, and the first and sec-
ond ones are based on genetic algorithm, and the last
one is based on tabu search. As the stage proceeds, a
set of solutions are gradually refined.

The proposed method is a parallel algorithm, run-
ning on a PC cluster. We implemented the proposed
parallel metaheuristic algorithm with the MPI (Mes-
sage Passing Interface) library [8] on a PC cluster con-
sisting of 14 PCs. Experimental results show the ef-
fectiveness of the proposed method.

2 Preliminaries

2.1 Floorplanning Problem

Floorplanning is a generalization of the placement
problem in VLSI building block layout, and it deter-
mines the coarse placement for a given set of modules

(91

A module m; € M(0 < i < n) is a subcircuit
whose shape is a rectangle with a given height and
width in real number. A floorplan of a set of modules
is a non-overlapping placement of given modules. The
minimum bounding rectangle of a floorplan is called
the chip. Each module has several terminals on its
boundary, which are to be interconnected with wires.
Interconnections among terminals are specified by a
netlist. The floorplanning problem is to find a floor-
plan of M onto a chip with the minimum area and
wire length. This problem is known to be NP-hard,
and hence good heuristics are generally solicited.

2.2 Representation of Chromosomes

We adopt sequence-pair [6] to represent each indi-
vidual of the proposed floorplanning method. Let
70 < i < P) be ¢-th individual in the pop-
ulation. z* represents a candidate solution of the
floorplanning problem, and is denoted by zt =
T+, T—% 09, (4%, I'-Y is the sequence-pair
whose respective elements are composed of module
names, that is, (Y44, y+{, -+, v+%, - -, v+,_1) and
(Vb Y—ht 1 s Y52 s Y=hp1) - ©° shows
orientation of modules, that is, ©% = {0, ..., 7}, (2n <
j < 3n) . Each position of an individual is called the
locus of chromosome.

2.3 Objective Functions

The objective of the floorplanning problem is to min-
imize the total wire length as well as the chip area.
In the proposed algorithm, any solution of the prob-
lem is represented as a sequence-pair. The chip area
is calculated from a sequence-pair by constructing the
H/V constraint graphs, and finding the longest paths on
H/V constraint graphs [6]. The orientation of modules,
which are specified by ©°, are also considered. When
calculating the chip area, coordinates of each module
can be also determined. From the module placement,

(13)

master process slave process

generate a population | [generate a population
——
=z
e
% L L
) selection | [sclection |
1%}
5 3
— repeat? o
No No
[aggregate solutions _|«--»[aggregate solutions |
construct a population
e 2l
=
o
pi
2
(o]
&
g
%]
Yes
No.
[receive solutions __|e---{ _send best solutions
Yes
[send solutions }---»{ receive solutions |
No No
é‘ [sendsolutions }w--»[receivesolutions |
e i
= — -
% [maintain solutions | tabu search |
S - - b
7 [receive solutions _ Je---{ _send solutions |

Figure 1: Flow chart of the algorithm.

the total wire length is calculated with the half perime-
ter of the net bounding box.

In this paper, we treat the floorplanning problem as
a multi-objective optimization problem, and introduce
the concept of Pareto-optimality |3] to this problem.
For the floorplanning problem discussed in this paper,
we consider three objective functions. The first one
is the chip area, denoted A, the second one is the to-
tal wire length, denoted W, and the third one is the
weighted sum of 4 and W, denoted F'(A, W), which
is defined as follows.

F(AW) = A+ kxW (1)

where k is a constant.

3 The Algorithm

3.1 Overview of the Algorithm

The proposed algorithm is based on metaheuristics,
and consists of three stages. It is a parallel algorithm,
which is implemented on a PC cluster. The algorithm
consists of one master process and several slave pro-

cesses. The master process controls overall behaviors
of the algorithm, and slave processes executes their
own tasks under the controls of the master. Figure 1
shows the flow chart of the algorithm.

The first stage was based on a genetic algorithm.
The objective of this stage is to explore the search
space globally in a shorter computation time. To
achieve this objective, a GA-based floorplanning algo-
rithm, which was originally proposed by the authors
in [7], is executed on each PC in a PC cluster in par-
allel. In this stage, there is no difference between the
master and slave processes. In each process, an ini-
tial set of chromosomes (i.e., floorplans) are randomly
generated, and the GA-based floorplanning method is
executed independently. To realize an efficient search,
when calculating the total wire length of nets, any ter-
minal of a net is assumed to be located on the center of
a module. This assumption is very effective to reduce
the time to evaluate each chromosome, since there is
no need to consider positions of terminals as well as
the precise orientation of each module.

After completing the first stage, the second stage of
the algorithm begins. In this stage, first, all chromo-
somes obtained in all processes are merged into one
set. Each process randomly selects chromosomes from
this set to form an initial set of chromosomes, and
starts the second stage. In this stage, each slave pro-
cess periodically communicates with the master pro-
cess. Each slave sends best chromosomes at that time
to the master. If no improvement has been observed
for a certain period in some slave, this slave demands
the master to send new chromosomes to it to update
the set of chromosomes. In this second stage, each
chromosome is evaluated more precisely than the first
stage. When calculating the total wire length, the po-
sition of each terminal of a net as well as orientations
of modules are considered.

The third stage of the algorithm is based on tabu
search. The master process selects best chromosomes
among all chromosomes produced by slave processes
in the second stage, and assigns some of them to each
slave process to further improve it by tabu search.
When assigning a chromosome to a slave process, the
master also specifies the objective function to be op-
timized, since there are three objective functions, A,
W, and F(A,W), and tabu search cannot be used
to achieve Pareto optimization for a set of solutions.
To implement tabu search, neighborhood of a solution
should be defined. In the proposed method, a solution
(floorplan) s is regarded as a neighborhood of solution
t, if s can be obtained by interchanging some pair of
modules with modification of their orientation.

3.2 GA-based Floorplanning Method

As mentioned, the first and second stages of the pro-
posed method are GA-based floorplanning methods,
and those are based on the algorithm proposed by the
authors in [7]. The base algorithm in the first and sec-
ond stage is an ordinary generational GA. It keeps a
set of chromosomes as a population, and by apply-
ing crossover, mutation, and selection operations, the
next generation is periodically produced until a termi-
nal condition is satisfied. In the following, each oper-
ation is briefly explained.

(1) Crossovers In [7], we have presented two
crossover operators, called CTPX and PPEX, for the
adaptive GA-based floorplanning method. In this pa-
per, those two operators are used in the proposed paral-
lel GA. CTPX is designed for preserving the character-
istics of parents to offspring. On the other hand, PPEX
is designed to explore the search space widely. Using
two types of crossover operators enables the proposed
method to explore the solution space effectively and
efficiently. For lack of space, we omit the details of
those two crossover operators.

(2) Mutation In [7], the mutation operator MM has
been presented for the floorplanning problem. This
mutation operator is also used in the proposed parallel
GA. Mutation is occurred with mutation rate p,, per
each gene of '+ and ©. For each sequence-pair, MM
randomly selects two module names and exchanges
them, that corresponds to the movement of a module
to some random location on the oblique grid. For the
orientation of each module, MM flips the height and
width of the module randomly.

(3) Selection As mentioned, the floorplanning prob-
lem discussed in this paper is formulated as a multi-
objective optimization problem. For multi-objective
optimization based on Pareto optimality, several se-
lection operators have been proposed [2]. Among
them, we adopt a crowded tournament selection op-
erator proposed by Deb, et al.[2]. This selection op-
erator is a variation of ordinary tournament selection
operators. Using this operator, the set of chromo-
somes maintained in the GA is gradually converged
to a Pareto-optimal solution set. The diversity among
non-dominated solutions is also considered.

3.3 Parallel Implementation

To implement the proposed parallel floorplanning al-
gorithm, we assume the message-passing model as a
parallel programming model. In this model, the un-
derlying hardware is assumed to be a collection of pro-
cessors, each with its own memory. A processor has
direct access only to the instructions and data stored
in its local memory. An interconnection network sup-
ports message passing between processors. Processor

A may send a message containing some of its local
data values to processor B, giving processor B indi-
rect access to these values. In our implementation,
the whole program was implemented on a PC cluster,
which connects multiple PCs with a high-speed local
area network.

We adopted the MPI (message passing interface) li-
brary to write a parallel program, running on a PC
cluster. MPI is the most popular message-passing li-
brary standard for parallel programming([8].

4 Experiment

To investigate the performance of the proposed par-
allel metaheuristic floorplanning algorithm, some ex-
periments were conducted. We implemented the pro-
posed parallel algorithm with the C language with the
MPI library [12]. The proposed method was executed
on a PC cluster, which consisted of 14 PCs, in which 7
PCs had Pentium 4 3.4GHz CPUs with 3GB memory,
and the other 7 PCs had Pentium 4 3.2GHz CPUs with
3GB memory. All PCs were connected with a 1 Gbps
Ethernet.

For the lack of space, we show experimental results
for one benchmark data obtained from [11]. In this
benchmark data, the number of modules is 200, the
number of nets is 1274, and the lower bound of the
chip area (i.e., the total area of all modules) is 17.57
(mm?). We executed the proposed method in 5 times.

In experiments, we adopted the following parame-
ter values: For the first and second stages, each process
had a population of 25 chromosomes, and executed the
GA process until the number of generations reached to
100, 000 and 50,000, respectively. The probabilities
of crossover and mutation were set to 0.6 and 0.005,
respectively. For the first stage, the ratio of select-
ing CTPX and PPEX as crossover operators was set
to 6 : 4, and for the second stage, this ratio was set to
4 : 6. In the second stage, in every 200 generations,
each slave process sent their best 15 chromosomes at
that time to the master. In the third stage, in tabu search
at each slave process, for each solution obtained in the
second stage, the maximum number of updating solu-
tions was set to 18, 000.

Table 1 shows experimental results. In this table,
“Area”, “Wire length”, “Weighted sum” and “CPU”
in each column represent the chip area, the total wire
length, the weighted sum of the chip area and to-
tal wire length, and the computation time, respec-
tively. For the chip area, the dead space in percentage
was also shown. “GAL1” represents results when only
the first stage was executed for 150, 000 generations.
“GA1+GA2+TS” represents results of the proposed
method. “Area”, “Wire” and “Sum” in the row rep-
resent the results of best solutions for optimizations of

Table 1: Experimental results.

Area (mm?) | Wire length (mm) | Weighted sum | CPU (sec)
(dead space (%))

Area | Best 19.89 (11.67) 2828.77 34.03
Ave. 19.98 2854.61 34.25

GA1 | Wire | Best 20.75 (15.31) 2691.97 34.21 2090.31
Ave. 21.94 2725.15 35.57
Sum | Best 20.20 (13.04) 2697.52 33.69
Ave. 20.12 2769.83 33.97
Area | Best 18.69 (6.01) 3914.88 38.27
Ave. 18.73 3796.50 37.72

GAl+ | Wire | Best 25.33 (30.63) 2100.58 35.83 5140.33
GA2+ Ave. 24.53 2119.80 35.13
TS Sum | Best 19.36 (9.26) 2433.76 31.53
Ave. 19.39 2457.78 31.68

the chip area, the total wire length, and their weighted References

sum, respectively. “Best” and “Ave” in the row mean
the best and average values of results.

From this table, we have the following observations.
First, the multistage scheme of the proposed method
could successfully reduce the computation time with-
out degrading results. Second, a set of Pareto optimal
solutions could successfully be obtained. Note that, in
this experiment, 25 solutions were simultaneously pro-
duced as final results. From those results, users could
select the best one according to their own criterion.
Third, parallel processing was useful for reducing the
computation time. If the proposed algorithm was ex-
ecuted on one CPU, its computation time would be
nearly 20 hours. From those results, we conclude that
the proposed method was effective to produce a good
floorplan in a practical computation time.

5 Conclusion

We have proposed and implemented the parallel mul-
tistage metaheuristic floorplanning algorithm in VLSI
building block layout. There are several possible ex-
tensions of the proposed method. First, since the tim-
ing should be considered in recent LSI design, we have
a plan to modify the objective functions so that given
timing constraints should be met. Second, it is inter-
esting to modify the proposed method so that the floor-
planning algorithm will be run on a larger PC cluster.
Finally, in modern floorplanning, in addition to timing
constraints, there are several other design constraints
such as placement constraints of modules and fixed
outline constraints of the chip area [1]. It is impor-
tant to extend the proposed algorithm so as to handle
those design constraints.

[1] S. N. Adya and L. L. Markov: “Fixed-outline floot-
planning: Enabling hierarchical design,” IEEE Trans.
VLSI Systems, Vol.11, No.6, pp.1120-1135 (2003).

[2] K. Deb: Mulri-Objective Optimization Using Evolu-
tionary Algorithms, John Wiley & Sons (2001).

[3] D. E. Goldberg: Genetic Algorithms in Search, Op-
timization, and Machine Learning, Addison-Wesley
Publishing Company (1989).

[4] F. Glover and M. Laguna: Tabu Search, Kluwer Aca-
demic Publishers (1997).

[5]1 P. Mazumder, E. M. Rudnick: Genetic Algorithms for
VLSI Design, Layout & Test Automation, Prentice Hall
(1999).

[6] H. Murata, K. Fujiyoshi and Y. Kajitani: “VLSI
module placement based on rectangle-packing by the
sequence-pair,” IEEE Trans. on Computer-Aided De-
sign of Integrated Circuits and Systems, Vol.15, No.12,
pp.1518-1524 (1996).

[7] S. Nakaya, T. Koide and S. Wakabayashi: “A VLSI
floorplanning method based on an adaptive genetic
algorithm,” Journal of Information Processing Soci-
ety of Japan, Vol.43, No.5, pp.1361-1371 (2002), in
Japanese.

[8] P. S. Pacheco: Parallel Programming with MPI, Mor-
gan Kaufmann (1997).

[91 S. M. Sait and H. Youssef: VLSI Physical Design Au-
tomation: Theory and Practice, IEEE Press (1995).

[10] S. M. Sait, H. Youssef, H. R. Barada and A. Al-
Yamani: “A parallel tabu search algorithm for VLSI
standard-cell placement,” Proc. IEEE International
Symposium on Circuits and Systems, Vol.II, pp.581-
584 (2000).

[11] http://www.cse.ucsc.edu/research/surf/GSRC/
benchl1.html

[12] http://www-unix.mcs.anl.gov/mpi/mpichl/

75‘7

