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Abstract Understanding the function of biological molecules requires knowledge of their folded structures. In particular,
noncoding functional RNAs have received much attention. Due to the difficulty in predicting the three dimensional structure
of RNA, research efforts have shifted to the prediction of secondary structure both with and without pseudoknots. In this
paper, we present a method of applying integer programming (IP) to RNA secondary structure prediction. We introduce a
method with respective IP formulations for predicting pseudoknot-free structure as well as arbitrary planar pseudoknotted
structure. Furthermore, we show some experimental results on structure prediction using the proposed method.

1 Introduction

One major task in bioinformatics is to predict the structure of biological molecules because the knowledge of
its structure is required in order to understand how its function performs. An RNA is a biological molecule
that plays many important roles in cell. The three dimensional structure of RNA is a key to understand its bio-
logical function. Unfortunately, it is very difficult to model and predict three dimensional structure; therefore,
most research has been made on RNA secondary structure prediction. Analysis of secondary structure can be
viewed as an intermediate step to understand its three dimensional structure, and provides information about
its function.

A molecule of RNA can be viewed as a single strand of the nucleotides (bases) adenine (A), guanine (G),
cytosine (C) and uracil (U). The sequence of bases is called the primary structure. A and U, C and G, and G and
U can form a base pair via hydrogen bonding. Due to this property, the primary structure of RNA can fold back
on itself to form the secondary structure. The secondary structure of RNA can be decomposed into stacking
pairs (i.e., two or more consecutive base pairs), and a few types of loops that connect stacking pairs: hairpin
loop, bulge loop, interior loop and multi-branched loop (see Figure 1 (a)). An alternative graphic representation
of secondary structure is shown in Figure 1 (b), where arcs above the sequence connect base pairs. Also, there
are substructures called pseudoknots where some base pairs occur in a crossed fashion (see Figure 1 (b), (d)).

An often-used thermodynamic hypothesis states that the actual secondary structure of an RNA sequence has
the minimum free energy, where stacking pairs and loops have their associated free energy values. In general,
stacking pairs have negative free energy that contributes to structure stabilization, while loop substructures have
positive free energy that leads to destabilize the structure.

The problem of RNA secondary structure prediction is modeled as an energy minimization problem, and
many algorithms have been developed to solve it. RNA secondary structure without pseudoknot can be pre-
dicted in O(n®) time using dynamic programming algorithms (where 7 is length of the sequence) [7, 8, 11].
However, it has been recognized that pseudoknots appear in many RNA molecules. Allowing pseudoknots to
occur in the secondary structure causes the prediction problem harder. Several existing algorithms can pre-
dict RNA secondary structure with pseudoknots in O(n?), O(n®) or. O(n®) time [1, 6, 9, 10] (also see [2]).
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Figure 1: Example of RNA secondary structures

Moreover, prediction of arbitrary planar secondary structure including pseudoknots is proven to be NP-hard
[11.

We propose a method of secondary structure prediction both with and without pseudoknots based on inte-
ger programming (IP), which is known to be NP-hard. Despite the theoretical drawbacks, it is practical and
reasonable to model the prediction of planar RNA pseudoknotted structure by IP formulation.

This paper is organized as follows. First, in the preliminaries section, we formally define RNA secondary
structure. Next, an IP formulation of this prediction problem is explained. The section thereafter shows the
experimental results. Finally, a conclusion and future work are discussed.

2 Preliminaries

Definition 1. (RNA secondary structure)

An RNA sequence is represented by a string of n characters s = s159---s, wWhere s; € {A,C,G,U}. A
secondary structure of a sequence s is defined as a set S of base pairs (s;, s;) such that the following conditions
are satisfied:

1. 1 <1< j < n, meaning, two bases that form a pair must be located at different positions.
2. j —1i > t, where t is a small positive constant, meaning, the sequence does not fold too sharply on itself.

3. For all base pairs (s;, s;) and (sy7,5;:) in S, ¢ = ¢’ if and only if j = j', meaning, (s;, s;) and (sy, s;7)
are the same base pair.

We allow only valid base pairs: Watson-Crick base pairs (A4, U) and (C, G), and a wobble base pair (G, U) to
form in the structure.

We next define a pseudoknot, which is a kind of complex substructure of RNA.

Definition 2. (Pseudoknot)

An RNA secondary structure S is said to contain a pseudoknot if and only if there exist (s;, s;), (si7, ;) € S
(¢t < ')y suchthati < ¢/ < j < j'. Moreover, a pseudoknotted structure is planar if and only if every arc can
be drawn such that no two arcs cross on the plane in its arc representation!.

On the other hand, S is called pseudoknot-fiee if and only if for all pairs (s;, s;), (s, s57) € S (i < i'),
one of the following conditions is satisfied:

l.i<j<id <y, ie, (s;,s;) precedes (s, s5), or
2. i<t < §' <j, e, (s;,s;) includes (s, s5)

It is obvious that all pseudoknot-free secondary structures are planar.

!The pseudoknot shown in Figure 1 (d) is planar since the last two arcs can be drawn below the sequence.
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AU -09 -21 -17 -05 -09 -10
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U-A -08 -14 -12 -02 -05 04

Figure 2: Energy parameter matrix £ [12]

3 Integer Programming Based-Model

As mentioned in Section 1, the problem of RNA secondary structure prediction is modeled as an energy min-
imization problem based on a thermodynamic approach. In our integer programming-based approach, we
employ the stacking energy parameters for RNA folding at 37°C as given in Mfold Version 2.3 [12]. We for-
mulate two minimization integer programming (IP) models: the pseudoknot-free model and the pseudoknotted
model. These two models have the same objective function, but differ in their sets of variables and constraints.

3.1 Pseudoknot-Free Model

We first introduce a set of integer variables for a mathematical formulation of the prediction problem. Let
x;; = 1 if and only if the base at position i pairs with the base at position j, otherwise z;; = 0. In order to
take stacking energy into consideration, we use k X | (rowx column, resp.) square energy parameter matrix £
shown in Figure 2, where k and ! denote the type of all possible pairs and their values range from 1 to 4Cs = 6.
For example, type 1 denotes A-U pair. We introduce zfj’ that corresponds to the stacking pair of (s;, s;) and
(8it1,8j-1), and z&! = 1 if and only if the base at position ¢ pairs with the base at position j with type k, and
the bases at the positions i + 1 and-j — 1 pairs with type [. Let L, and R;, = 1 if and only if the base at
position 4 pairs with some base at any other position greater than 7 and less than ¢ respectively. The goal is to
find an assignment of 0 or 1 to all variables; although the variables of interest are {x;;}. We can formulate an
IP problem for pseudoknot-free structure prediction as follows:
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Constraint (1) means that if base pair (s;, s;) is type k and (s;11, s;-1) is type [, the energy parameter associ-
ated with the (k, 1) stacking type will contribute to the total energy of the structure. Constraint (2) means that
base pairs other than defined valid pairs cannot occur in the structure. Constraint (3) means that a base at any
position in the sequence can participate in only one pair. Constraint (4) means we do not allow crossing pairs
in the structure. In constraints (5) and (6), L, and R, are defined respectively. Constraints (7) and (8) mean
that if a base at any position pairs with any other position, its previous or its next position or both must also
form a base pair. Constraint (9) guarantees all variables to be either 0 or 1.

3.2 Pseudoknotted Model

For the pseudoknotted model, we add variables y;; and other set of variables associated with y;;, i.e., L,, and
Ry, to the model. The difference between x;; and y;; is that ;; represents an arc that connects the bases above
the sequence, while y;; represents an arc below the sequence, which corresponds to modeling for arbitrary
planar pseudoknotted structures. The objective function remains the same as the pseudoknot-free model, while
the constraints are changed as follows:
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D:l

The constraint set of the pseudoknotted model has similar meaning to that of the pseudoknot-free model, except
that the constraints also apply to y;; variables and their associated variables (L, and Ry,).
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Table 1: Prediction accuracy for the pseudoknot-free model
Seq. Length  Avg. time(sec.)  Sensitivity (%)  Specificity (%) F-measure (%)

RF00032 26 0.157 100 100 100
RF00037 30 0.296 60 60 60
RF00196 35 0.508 93 95 94
RF00385 42 0.989 97 99 98
RF00250 56 3.667 97 98 98

Table 2: Prediction accuracy for the pseudoknotted model

Seq. Length  Time (sec.) Sensitivity (%)  Specificity (%)  F-measure (%)
BaMV 39 3.080 25.00 2727 26.09
BMV3_UPD_PK1 26 0.346 80.00 88.89 84.21
BMV3_UPD_PK2 21 0.174 25.00 50.00 33.33
BMV3_UPD_PK3 23 0.259 0 0 0
BMV3_.UPD_PK4 26 0.453 88.89 72.73 80.00
BSBV2_UPD_PKb 33 0.998 40.00 44.44 42.11
BSBV2_UPD_PKc 24 0.292 66.67 66.67 66.67
BSBV3_UPD_PKb 36 9.400 83.33 66.67 74.07
BSBV3_UPD_PKc 24 0.288 71.78 100.00 87.50
BSMVbeta_UPD_PK1 32 1.492 0 0 0
BSMVbeta_UPD_PK2 26 0.408 100.00 100.00 100.00
BSMVbeta_UPD_PK3 33 1.511 30.00 42.86 3529
STMV_UPD1_PK1 25 0.346 7143 50.00 58.82
STMV_UPD1_PK2 26 0.422 77.78 58.33 66.67
STMV_UPD1_PK3 32 0.977 33.33 42.86 37.50
STMV_UPD2_PKI1 31 1.065 0 0 0
STMV_UPD2_PK2 26 0.597 0 0 0
STMV_UPD2.PK3 24 0.262 100.00 80.00 88.89
STNVI1_PK1 26 0.371 0 0 0
STNV1_PK2 31 0.832 75.00 69.23 72.00
STNV1_PK3 26 0.417 20.00 28.57 23.53
STNV2_PK1 29 0.500 0 0 0
STNV2_PK2 25 0.301 88.89 80.00 84.21
STNV2_PK3 27 0.425 3333 60.00 42.86
TMGMV_UPD_PK1 27 0.378 50.00 55.56 52.63
TMGMV_UPD_PK2 24 0.260 71.78 77.78 77.78
TMGMV_UPD_PK3 33 1.148 37.50 33.33 35.29

4 Experimental Results

Both models described in Section 3 were tested on sets of sequences with known structure. The pseudoknot-
free sequences were obtained from Rfam [5]. We selected 5 families of short RNA sequences. For each family,
5 sequences were chosen randomly. ‘On the other hand, sequences that are known to contain pseudoknots were
obtained from PseudoBase [3]. 29 short sequences were selected randomly. We used the ILOG CPLEX 10.1
[13] software to solve the IP models.

We evaluate the prediction results by calculating sensitivity, specificity and F-measure. Sensitivity is the
number of correctly predicted base pairs divided by the number of base pairs of the known structure. Specificity
is the number of correctly predicted base pairs divided by the total number of predicted base pairs. F-measure
1s the harmonic mean of sensitivity « and specificity 3, which is defined as %‘j—_ﬁ

Table 1 and Table 2 shows the results of the pseudoknot-free model and the pseudoknotted model respec-
tively. According to the sensitivity and specificity values, the pseudoknot-free model yields good prediction
results for all of the test sequence sets. For the pseudoknotted model, although some structures were predicted
correctly or almost correctly, a few structures cannot be predicted.
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5 Conclusion

We introduced two integer programming (IP) models for RNA secondary structure prediction: the pseudoknot-
free model and the pseudoknotted model. We performed tests on our prediction models with sets of known
structure sequences, which were selected randomly from the databases. We then used the sensitivity and
specificity to evaluate the predicted results. Since the performance of the pseudoknotted model is not as high
as expected, we have to reconsider the model. In addition, we have to include other kinds of energy parameters
into both models in order to improve the prediction accuracy.
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