FEEREN LB B
IPSJ SIG Technical Report

2008 —MPS—170
2008,77,/14

Evaluations of Parallel double Divide and Conquer
on a 16—core computer

Taro Konda, Hiroki Toyokawa and Yoshimasa Nakamura'*
t Department of Applied Mathematics and Physics,
Graduate School of Informatics,

Kyoto University
Yoshida Honmachi, Sakyo-ku, Kyoto, JAPAN
1 SORST, JST

Abstract For bidiagonal SVD, double Divide
and Conquer was proposed. It first computes
singular values by a compact version of Di-
vide and Conquer. The corresponding singular
vectors are then computed by twisted factoriza-
tion. The speed and accuracy of double Divide
and Conquer are as good or even better than
standard algorithms such as QR and the orig-
inal Divide and Conquer. Moreover, it shows
high scalability even on a PC cluster, distributed
memory architecture. This paper presents eval-
uations of parallel double Divide and Conguer
for singular value decomposition on a 16-core
architecture.

1 Introduction

A new algorithm, double Divide and Con-
quer(dDC), improves the parallelism of algorithm
with twisted factorization for SVD[1] and EVD{2].
It adopts Divide and Conquer(D&C) to paral-
lelize the section of singular/eigen value compu-
tation. It is as fast and accurate as I-SVD. More-
over, high scalability on a PC Cluster is shown|[3].

Recently, multi/many-core computers are dis-
tributed to the market. This architecture is not
only the way to speed-up the computer but also
power-effective approach. We can expect that
multi/many—core architecture will become com-
mon year by year in high performance comput-
ing area. One of the features of this architec-
ture related the performance of parallel program
is shared cache structure. Some/all cores on the
same CPU shares same cache memory. High per-
formance will be expected when we use this share
cache structure effectively. In this paper, we eval-
uate parallelism of dDC for SVD on a 16—core
computer with 4 Quad—core AMD Opterons, in
some matrix sizes and types.

2 Singular Value Decomposi-
tion

An arbitrary m X n rectangular matrix A is con-
verted to an upper bidiagonal matrix B by Housh-
older transformation[4, 5] as follows.

Asz(]g)f/TorU(B 0 VT, ()

where U and V are suitable orthogonal matrices.
This paper is mainly concerned with SVD of the
bidiagonal matrices B.

Let Ts be a positive definite symmetric ma-
trix that consists of a n x n bidiagonal matrix B
such that Ty = BTB. And let \x (k=1,---,n)
be eigenvalues of the matrix Ts. Then oy, sin-
gular values of B, is given by o = VAx (k =
1,---,n).

3 double Divide and Con-
quer

The double Divide and Conquer(dDC) for singu-
lar value first computes singular values by a “com-
pact” Divide and Conquer, then, it computes the
corresponding singular vectors by twisted factor-
ization described in section'3.2.

3.1 Divide and Conquer for the
Computation of Singular Val-
ues

Given an n X (n + 1) upper bidiagonal matrix

b1 b2
b3

ban—2
b2n—l

C))

its SVD is
B=U(X 0)VT, 3)

where U is an n X m orthogonal matrix whose
columns are left singular vectors. V is an (n +
1) X (n+1) orthogonal matrix whose columns are
right singular vectors. ¥ is an n X n nonnegative
definite diagonal matrix and 0 is a column of zero
elements.

The n x (n + 1) upper bidiagonal matrix B is
partitioned into two submatrices as

B, 0
B=| by_1exT borer” (4)
0 B,

for a fixed k such that 1 < k < n, where B;
is a (k —1) x k lower bidiagonal matrix, B is an
(n—k)x (n—k+1) upper bidiagonal matrix and e;
is the j—th unit vector of appropriate dimension.
The parameter k is usually taken to be [n/2].
Now, suppose that SVD of the B; is given by

B; = U; (Di 0) (Vi vi)" . (5)

Let 1; be the last row of V7, 1, be the last element
of vy, f5 be the first row of V5 and ¢» be the first
element of vo. By substituting (5) into (4), we
then obtain

0 Ui 0 /[bok—191 bak—1l1 borfz boroho
B=|1 0 0 0 D, 0 0

0 0 U 0 0 Dy 0

T
vi Vi 0 0

x(00 V vz) . (6)
If Givens rotation is applied to make box¢o zero,
then we get

B=0U(M 0)(V)7, (7)
where
i 0 U 0
U = 1 0 O ,
0 0 U,
To bog—1l1 boxfo
M = 0 D, 0)

0 0 D,
V = (COVI ‘/1 0)7 v

—SoV1
sova 0 Vo CoVa ?
V (b2k-1%1)2 + (bax$2)?,
bok— b
2k 11 0= 2k¢2_ (8)

C =)
To To

Il

To

Thus the matrix B is reduced to (M 0) by
the orthogonal transformations U and (vV v)

(6]-

Figure 1: Parallel model of SVDC (P = 4).

The above D&C process can be simplified when
only singular values are desired. From (7) and (8),
B is written as

B =10(Mo)(v %)
= UWnzvE 0)(V v)"
= us(vvy v)7 9)
T
_ vy V1 0 —80V1
oo a)w ()
thus

f = (o1 fr 0)VM7
l (801/12 0 l2)VMa
¢ —SoP1, Y = coa, (10)

where f; is the first row of V3, ¢, is the first ele-
ment of vy, 1z is the last row of Vs, 1 is the last
element of v,, 1 is the last row of V, 9 is the last
element of v, f is the first row of V and ¢ is the
first element of v.

Because most.of the running time of D&C is
consumed for vector update during singular vec-
tor computation, SVDC is wholly faster than the
normal one.

Il

3.2 Twisted Factorization for the
Computation of Singular Vec-
tors

Let us consider the following system
(Ts — ;\I)x(k) = exVk, (11)

where e is the k—th unit vector of appropriate
dimension, the k-th element of e® is 1 and ~;
is a residual norm of the k—th equation. Suppose
that L is a lower bidiagonal matrix and U is an
upper bidiagonal matrix such that

LDVLT
= UDUT, (12)

Ty — X

Table 1: Specification of test bed.

CPU Quad AMD Opteron 1.8GHz
(Cache) (Shared 2MB)
#Cores/CPU 4
#CPUs 4
#Cores 16
Memory 16GB
0OS openSuSE Linux
(kernel) (Linux 2.6.22.12-0.1-default)
Compiler gfortran 4.2.1

where L and U are given by Choleskey decompo-
sition of Ty — AI and let the i-th element of the
diagonal matrix D* and D~ be D;f and D}, and
i—th subdiagonal element of L and U be L; and
U;, respectively, then, factorizations LD+ LT and
UD~UT are respectively computed by the algo-
rithms stdLVvs and rdLVus [7].

Therefore, the twisted factorization is de-
scribed as follows.

T, — M = Ny Dy NY, (13)
where Ny is the twist factor[8, 9] defined as
1
L, 1
Ny = L1 1 Uk)
1 Un—l
1

factoring the matrix from top to bottom and from
bottom to top to meet at row k. And Dy is a
diagonal matrix such that

Dy, = diag (DY, ..., Dy_,,7, D15, D) - (14)

When Xis close to eigenvalues of T, singularity of
T, — M is revealed by choosing v = arg miny |yx/|.

3.3 Parallel double
Conquer

Divide and

Here, our concern is a parallel version of dDC.
Each piece of twisted factorization can be exe-
cuted independently. Moreover, each of them has
almost equal amount of loading. Thus, we par-
allelize SVDC more carefully. The original D&C
is parallelized naively because a large amount of
matrix—matrix products is operated. But SVDC
of dDC skips this operation. Figure 1 shows our
strategy for parallel SVDC. This is a tree struc-
ture of SVDC executed by 4 processors. A leaf
of the tree represents a submatrix. A node is a

merger process of two submatrices. A number on
leaves and nodes shows processor number to com-
pute SVD of a submatrix and merge submatrices,
respectively. A line is process transition. In par-
ticular, an arrowed line between boxes (leaves and
nodes) means communication between processors.

After submatrices are assigned evenly to all
processors and the corresponding SVDs are com-
puted, submatrices are merged. The merger pro-
cess is parallelized when the height becomes more
than P, the number of processors. Data Xy, f,
1, ¢ and ¢ are sent and shared by responsible
processors. This process continues until the root
node is computed. After that, the computed sin-
gular values are broadcasted to every processor.
Finally, twisted factorization is invoked parallelly.

With multi-core machine, these data (X, f,
1, ¢ and 9) will be shared in only the shared—
memory but shared—cache successfully, although
they are formally sent between cores.

4 Numerical Experiments

In this section, we evaluate parallelism of dDC.
The following is test matrix.

e Type 1: All diagonal elements are 2.001 and
all subdiagonal elements are 2.0. All singular
values are separated to each other. Deflation
of dDC seldom occurs (approximately 10%
of dimension n).

Here, dDC uses QR to solve submatrices. Af-
ter singular vectors are computed by twisted fac-
torization, dDC invokes inverse iteration to re-
fine orthogonality of these vectors. The parallel
dDC is implemented ‘with MPI[10] in the same
way as on PC—cluster. Table 2 shows specifica-
tion of the test bed, a multi-core computer with
4 Quad AMD Opterons with 16GB memory.
Table 2 shows the best times in second of 10
executions of the type 1 matrix. The number of
cores ranges from 1 to 16. Dimensions of tested
matrices are n=10,000, n=25,000, n=50,000 and
n=75,000. Parallel speed-up Sp and parallel ef-
ficiency Ep = Sp/P are also calculated. For
n=25,000, Eps are more than 1.0 with 2, 4 and
8 cores. These are highly effective parallelization
called super linear. It is also observed with 2 cores
for n=50,000 and n=75,000. Parallel dDC utilize
shared cache memory of multi—core architecture.
Efficiencies of n=25,000 are better than those
of n=10,000. But, those of n=50,000 and
n=75,000 are worse. It is unusual because ordinal
parallel program becomes more effective when the
problem size gets increased. It seems more likely

Table 2: Timing, speed—up and parallel ratio of Parallel dDC (Matrix: Type 1).

#Cores | 1 4 8 16
n=10,000 63.40 32.11 16.62 8.59 4.58
Sp 1.00 3.81 7.38 13.84
Ep 1.00 0.95 0.92 0.87
n=25,000 445.60 212.00 105.34 55.30 29.81
Sp 1.00 4.23 8.06 14.95
Ep 1.00 1.06 1.01 0.93
n=>50,000 | 1695.32 838.16 428.34 230.40 133.42
Sp 1.00 3.96 7.36 12.71
Ep 1.00 0.99 0.92 0.79
n=75,000 | 3922.11 1955.45 996.39 540.79 328.92
Sp 1.00 3.94 7.25 11.92
Ep 1.00 0.98 0.91 0.75

in second: [s]

Sp: Speed—up ratio by P processors
Ep: Parallel Efficiency by P processors

that transfer data size exceed cache size for this
large matrix.

5 Conclusions

In this paper, we presented some evaluations of
parallel double Divide and Conquer with MPI for
bidiagonal SVD on a 16—core computer. We can
expect that multi/many—core architecture is not
only the way to speed-up the computer but also
power-effective approach. Parallel dDC showed
high scalability for various matrix sizes. Super
linear efficiency is observed for some cases because
of good use of shared cache memory of multi—core
architecture. However, the efficiency is declined
when the matrix is too large for the cache mem-
ory. We can say that dDC parallelized with MPI
works well on multi/many—core architectures.

References

[1] T.Konda, H. Tsuboi, M. Takata, M. Iwasaki,
and Y. Nakamura. Preliminary result of par-
allel double divide and conquer. Proceedings
of International Conference on Parallel and
Distributed Processing Techniques and Appli-
cations (PDPTA’06), pages 888-894, 2006.

[2] H. Tsuboi, T. Konda, M. Takata, K. Kimura,
M. Iwasaki, and Y. Nakamura. Evaluation
of a new eigen decomposition algorithm for
symmetric tridiagonal matrices. Proceedings
of International Conference on Parallel and
Distributed Processing Techniques and Appli-
cations (PDPTA’06), pages 832-838, 2006.

[3] T.Konda, H. Tsuboi, M. Takata, M. Iwasaki,
and Y. Nakamura. Parallelism of double
divide and conquer algorithm for singular
value decomposition. Proceedings of the
IASTED International Conference on Paral-
lel and Distributed Computing and Networks,
2007.

G. Golub and W. Kahan. Calculating the
singular values and pseudo-inverse of a ma-
trix. STAM J. Numeri. Anal., 2(2):205-224,
1965.

4

[5] J. Demmel. Applied Numerical Linear Alge-
bra. STAM, 1997.

[6] M. Gu and S.C. Eisenstat. A divide-and-
conquer algorithm for the bidiagonal svd.
SIAM J. Matriz Anal. Appl., 16(1):79-92,
1995.

M. Iwasaki, S. Sakano, and Y. Nakamura.
Accurate twisted factorization of real sym-
metric tridiagonal matrices and its applica-
tion to singular value decomposition. Trans.
Japan. Soc. Indust. Appl. Math., 15(3):461—
481, 2005.

[7

8

K. Fernando. On computing an eigenvector
of a tridiagonal matrix. part 1: basic results.
SIAM J. Matriz. Anal. Appl., 18(4):1013~
1034, 1997.

[9] B. Parlett and I. Dhillon. Fernando’s so-
lution to wilkinson’s problem: An applica-
tion of double factorization. Lin. Alg. Appl.,
267:247-279, 1997.

[10] W. Gropp, E. Lusk, and A. Skjellum. Using
MPI Second Edition. The MIT Press, 1999.

