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A Note on Sequence Generation Power of One-Bit Cel-

lular Automata with One and Two Internal States
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Osaka Electro-Communication Univ., Graduate School of Engineering

Abstract

Cellular automaton (CA) are considered to be a non-linear model of complex systems in which an infinite
one-dimensional array of finite state machines (cells) updates itself in a synchronous manner according to a
uniform local rule. We study a sequence generation problem on a special restricted class of cellular automata
having 1-bit inter-cell communications (CA1_p;t). The 1-bit CA can be thought to be one of the most powerless
and simplest models in a variety of CAs. However, we show that a rich variety of non-regular sequences can be
generated in real-time by the CAj_p;; with small internal states.
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1 Introduction

A model of cellular automata (CA) was devised for
studying self-reproduction by John von Neumann. It
is studied in many fields such as complex systems. Ma-
zoyer [1] and Umeo [2] devised a model of 1-bit inter-
cell-communication cellular automata (CA1—_pit). The
CAi_pit can be thought to be one of the most pow-
erless and simplest models in a variety of CAs. We
study a sequence generation problem on the CAj_pj.
It has been shown that infinite non-regular sequences
such as Fibonacci sequence and sequence {2"|n =

1,2,3...} can be generated in real-time by a CA1_pit
in Kamikawa and Umeo [3]. In this paper, we study
the sequence generation power of CAj_pix with 2 in-
ternal states. First, we give a characterization of
sequences generated by the CAj_piy with 1 internal
state in real-time. Then, we consider the class of se-
quences generated by CAj_pit with 2 internal states
and give partial classifications. It is shown that a se-
quence {n®*—n+1|n =1,2,3,..} can be generated in
real-time by a CA;—pit with 2 internal states, but not
generated by any CA;_yi; with 1 internal state. State-
efficient generation algorithms are also presented.
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2 Sequence Generation Prob-

lem

2.1 1-bit inter-cell-communication

cellular automata

CA1_pit consists of an infinite array of identical fi-
nite state automata, each located at a positive integer
point (See Fig. 1).
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Figure 1: 1-bit inter-cell communication cellular

automaton.

Each automaton is referred to as a cell. A cell at
point i is denoted by C;, where ¢ > 1. Each C;, except
for Cy, is connected to its left- and right-neighbor cells
via a left or right one-way communication link. These
communication links are indicated by right- and left-
pointing arrows in Fig. 1, respectively. Each one-
way communication link can transmit only one bit at
each step in each direction. One distinguished leftmost
cell Cq1, the communication cell, is connected to the
outside world. A cellular automaton with 1-bit inter-
cell communication (abbreviated by CAi_pi¢) consists
of an infinite array of finite state automata A = (Q, ),
where

1. @ is a finite set of internal states.

2. § is a function, defining the next state of any
cell and its binary outputs to its left- and right-
neighbor cells, such that é: Q x {0,1} x {0,1} —
Q x {Ov 1} x {071}7 where a(pvzvy) = (q,z/’y/)’
p, 9 € Q, z,2/,y,y € {0,1}, has the follow-
ing meaning. We assume that at step ¢ the cell
C; is in state p and is receiving binary inputs
z and y from its left and right communication
links, respectively. Then, at the next step, t+1,
C; assumes state q and outputs z’ and 3’ to
its left and right communication links, respec-
tively. Note that binary inputs to C; at step ¢
are also outputs of C;_; and C;4+1 at step t. A
quiescent state q € @ has a property such that
6(‘]7 07 0) = (qx 07 0)

Thus, the CAi_pit is a special subclass of normal

(i.e., conventional) cellular automata.

2.2 Sequence generation problem
on CAj_p;

We now define the sequence generation prob-
lem on CAj;_yi;. Let M be a CAj_pit, and let

{tn|n = 1,2,3,..} be an infinite monotonically in-
creasing positive integer sequence defined for natural
numbers, such that ¢, > n for any n > 1. We then
have a semi-infinite array of cells, as shown in Fig. 1,
and all cells are in the quiescent state at time t = 0.
The communication cell C; is input the 1-bit signal
’1’ from the outside world at time ¢t = 0 for initiation
of the sequence generator. We say that M generates
a sequence {t,|n =1,2,3,...} in real-time if and only
if the leftmost end cell of M outputs 1 via its leftmost
communication link at time ¢ = t,.

We study sequences which can be generated on
CAi1_vit with 1 and 2 states, respectively, by using a
personal computer. Let £ be any natural number such
that £ > 1. We enumerate all of the transition rules of
the k-states CA1_pit. Each cell takes a state out of k
internal states and its input is a 1-bit signal from left-
and right-neighbor cells. The quiescent state g € Q
has a property such that 6(g,0,0) = (g,0,0). Thus,
there are 4-k—1 kinds of combinations of input of tran-
sition rule. When the cell C; changes internal state,
the cell C; outputs the 1-bit signal to its left and right
communication links. There are 4- & kinds of combina-
tions of output of transition rule. Therefore, CA;_p;
with k internal states has at most 4 - k**~? transition
rules.

3 Characterization of se-
quences
CA1_pit

3.1 CAj_,;; with 1 internal state

generated on

We study sequences generated on CA;_p;; with 1
internal state, where it has 64 transition rules. We ex-
amine the 64 transition rules with the personal com-
puter. Table 1 shows sequences which can be gener-
ated on CAj_pit with 1 internal state.

Transition rule no. in the Table 1 shows the transi-
tion rule number shown as follows:

Let M be a 1-state CAj_pi. M is formu-
lated as M = (Q,é(Q,0,0) = (Q,0,0), 5(Q7170) =
(Qxas b)7 6([),011) = (Q1 C;d)v J(Q.lyl) = (Qa 87/‘))5
such that Q € Q, a,b,¢,d, e, f € {0,1}.

Transition ruleno. =f-2°+e-24+d-28 +¢-22+
b-2'+a-204+1.

The symbol ”-” in the Table 1 shows that the leftmost
end cell C; always outputs '0’ at any time. Sequences
generated on CA;_piywith 1 internal state is classified
as a union of 25 finite sequences, 6 linear sequences
and a non-regular sequence. The class of finite se-
quence consist of 24 {1} and {1,3}. The class of lin-
ear sequence consist of 7 {2n —1|n=1,2,3,...}. The
class of non-regular sequence consist of {2" — 1|n =
1,2,3,..}.



Table 1: Sequences generated on CAi_p; with 1

internal state

Table 2: The class of sequences generated on

CA1_pi¢ with 2 internal states.

Transition || Sequence Transition || Sequence
rule no. rule no. Class | Type Sequences Number
o
- 53 -
; 34 N CA1—bit
3 35 - 1 Finite sequence Ex. (1), (1,3) 66698
1 = 36 B Z a-nF¥b Ex. (nln=1,23...7 20784
B 1 37 T (B-m=1|n=1,2,3,...}
5 i 38 1 3 a 27 F5b = 93
7 1 39 1
8 1 40 1
9 - 41
10 - 42 -
- 22 —1|m
}; :2 - (8-2" -2|n
13 (1) 45 (1) (8-2" -4|n
14 (2n =11 46 (Zfl_;lri ) (3-2" —4|n=1,2,3_..1)
B lZdo) L 1 a2 Fb ntc (7 2" =4 -n=38]
15 D) 17 € 2.8}
16 7 =11 48 1.3 (2o an e
=128 177—-12\ )
17 - 15 =1,2,3,
18 = ) B 5 n? —mn + 1 (2 —n+1|n=1,2,3,..}
19 B 51 - - 6125 (14 Vb n—1_ 6+2v5 1+ V5 n—1_
20 - 52 - 6 :;\/5—5( 2 ) (3\/5—5( 2 )
21 T 53 1 \/5(1—\/3)7._1_ 15—2\/5(1—\/3)7,_1_
22 T 54 1 3V54+5 0 2 3V6+5 z
33 T 5 T 2-m—3 2-n—-3|n=1,23,..)
24 1 56 T 7 Other sequences union of more sequence
35 - 57 random sequence
26 = 58 - .
57 = ) a, b, c : rational number.
38 B 50 B
29 (&) 1 €3]
30 (Zn —1] 62 (Zn =17 . ey . . ) .
n—=1,23,..) n=1,2,3..) Table 3: Transition rules for real-time generation
31 (€3] 63 [63) .
52 (zr = 1] o1 (Zn = 1] of sequence {n? —n+1|n=1,2,3,..}.
n=1,23_..) n=1,23,..}

3.2 CA;_y;; with 2 internal states

In this section, we study sequences which can be
generated on CAj_pit with 2 internal states. It sim-
ulates by 2097152 transition rules with a personal
computer and the generated sequences are examined.
Table 3.2 shows the class of sequences generated on
CAi_pit with 2 internal states. The class 7 consist
of union of more sequence and random sequences.
Union of more sequence generated by CA;_y with
2 internal states is [{1} U {6-n —4|n = 1,2,3,...}],
{1}u{4-n-2|n=1,2.3,..}], etc. Next, we show
a generation algorithm of sequence {n2 -n+1l|n=
1,2,3,...} on CAi_pit with 2 internal states.

3.2.1 Generation algorithm for sequence
{n?’—-n+1|n=12,3..}

Sequence {n* —n+1|n =1,2,3,...} can be gener-
ated in real-time by a CA;_p;x with 2 internal states
that is given in Table 3. In Fig. 2, we show a time-
space diagram for real-time generation of sequence
{nP-n+1|n=1,23,..}.

Real-time generation of sequence {n*> —n+1|n =
1,2,3,...} is described in terms of 3 waves: a-wave,
b-wave, e-wave. The a- and e-waves propagate in the
right direction at 1/1 speed. The b-wave propagates
in the left direction at 1/1 speed. At time t = 0,
the communication cell C; is input the 1-bit signal
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'’ from the outside world. As a result, the a-wave is
generated. When the a-wave propagates in the right
direction, the a-wave generates ”partition” to every
cell at every step. The e-wave is generated on the
cell C1. The e-wave propagates in the right direc-
tion. When the e-wave reaches the leftmost partition,
the e-wave and the leftmost partition are eliminated
and the b-wave is generated. The b-wave propagates
in the left direction. When the b-wave reaches the
communication cell Ci1, the C; outputs to the out-
side world. At after 2 steps, the e-wave is generated.
These waves are continuously generated. Therefore,
sequence {n> —n+1|n =1,2,3, ...} is generated in
real-time by a CAj_pit.

Let 4 be any positive integer and let j, I, m be any
positive natural number. At time ¢ = 4, it is assumed
that a partition is arranged on all cells since cell Ci(l >
Jj) and the cell C1 outputs the 1-bit signal ’1’ to outside
world. At time ¢t = i+2, the e-wave is generated on the
cell C;. The e-wave propagates in the left direction
at 1/1 speed. When the e-wave reaches C; at time
t =i+2+7—1, the e-wave and the leftmost partition
on cell C; are eliminated and the b-wave is generated.
The b-wave, generated by C; at time t =i +2+75—1,
propagates in the left direction at 1/1 speed. The
b-wave reaches C1 and the cell C; outputs the 1-bit
signal 1’ to outside world at time ¢ =i +2+2(j — 1).
The e-wave is generated at time ¢ = i+2+2(j —1)+2.
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Figure 2: Time-space diagram for real-time gen-

eration of sequence {n? —n+1|n=1,2,3,..}.

Because the leftmost partition moves to the cell C;411,
the cell C; outputs the 1-bit signal ’1’ to outside world
at time t = i +24+2( — 1) +2+2{(G + 1) — 1}.
Therefore, the cell C1 outputs the 1-bit signal 1’ to
its left communication link at t]me t=i+) 24
S 2+ (k-1 =1} =m’+(2j - )m+i(m =
1,2,3,...).

The initial configuration is all cell takes state Q
and the leftmost cell C; is input the 1-bit signal
’1’ from the outside world. At time ¢ = 1, the
cell C; takes state A, and outputs the 1-bit signal
1’ to left- and right-neighbor cells. it is approved
that j = 1,4 = 1. C; outputs the 1-bit signal '1’
to its left communication link at time ¢ = 1 and
t=m?>+m+1(m=1,2,3,...). Therefore, C; out-
puts the 1-bit signal "1’ to its left communication link
at time t = n> —n+1(n = 1,2,3,...). It is seen
that the scheme given above can exactly generate se-
quence {n® —n+1|n = 1,2,3,...} in real-time. We
have implemented the algorithm on a computer. We
have tested the validity of the rule set from ¢ = 0 to
t = 20000 steps. We obtain the following theorem.

[Theorem 1] Sequence {n?> —n+1|n = 1,2,3,...}
can be generated by a CA;_p;x with 2 internal states
in real-time.

In Fig. 3, we show a number of snapshots of the
configuration from ¢ = 0 to 31.

4 Conclusions

‘We have studied a sequence generation problem on
CA1—pit with small number of internal states. Charac-
terization of sequences generated by the CAj_pit with
1 and 2 internal states has been given. It has been
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Figure 3: A configuration of real-time generation

of sequence {n? —n+1|n=1,2,3,..} .

shown that sequence {n®> —n+1|n=1,2,3,...} can
be generated in real-time by a CAj_pix with 2 inter-
nal states. This algorithms for generation sequence on
CAi_bit are optimal in the number of states. A fu-
ture study in sequence generation problem on CAj_pi¢
is to compare sequence generation power of CAj_pi¢
with sequence generation power of conventional CA.
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