1状態および2状態1ビット通信セルラ・オートマトンの 数列生成能力について

上川 直紀

梅尾 博司

大阪電気通信大学大学院 工学研究科 情報工学専攻

概要

セルラ・オートマトン (CA) は非線形モデルの 1 つとして考えられている。CA はセルと呼ばれる有限状態オートマトンにより構成される。セルは自らと、隣接するセルの内部状態という局所的な情報を元に、自らを遷移させる機能しか持たない。この局所的な相互作用がモデル全体に影響を及ぼし、巨大で複雑な事象をシミュレートすることができるという特徴を持つ。本稿では、セル間の通信量を 1 ビットに制限したセルラ・オートマトンのモデル CA_{1-bit} 上での実時間数列問題について考察を行なう。 CA_{1-bit} は最も計算能力が小さいモデルであると考えられているが、高々 2 状態しか持たない CA_{1-bit} で複雑な非正則数列が生成可能であることを示す。

キーワード

1 ビット通信セルラ・オートマトン、セル間通信量、実時間数列生成問題、並列アルゴリズム

A Note on Sequence Generation Power of One-Bit Cellular Automata with One and Two Internal States

Naoki Kamikawa and Hiroshi Umeo

Osaka Electro-Communication Univ., Graduate School of Engineering

Abstract

Cellular automaton (CA) are considered to be a non-linear model of complex systems in which an infinite one-dimensional array of finite state machines (cells) updates itself in a synchronous manner according to a uniform local rule. We study a sequence generation problem on a special restricted class of cellular automata having 1-bit inter-cell communications (CA $_{1-\mathrm{bit}}$). The 1-bit CA can be thought to be one of the most powerless and simplest models in a variety of CAs. However, we show that a rich variety of non-regular sequences can be generated in real-time by the CA $_{1-\mathrm{bit}}$ with small internal states.

key words

cellular automata, 1-bit inter-cell-communication, real-time sequence generation problem, parallel algorithm, computational complexity

1 Introduction

A model of cellular automata (CA) was devised for studying self-reproduction by John von Neumann. It is studied in many fields such as complex systems. Mazoyer [1] and Umeo [2] devised a model of 1-bit intercell-communication cellular automata (CA_{1-bit}). The CA_{1-bit} can be thought to be one of the most powerless and simplest models in a variety of CAs. We study a sequence generation problem on the CA_{1-bit}. It has been shown that infinite non-regular sequences such as Fibonacci sequence and sequence $\{2^n | n =$

 $1,2,3\ldots\}$ can be generated in real-time by a CA_{1-bit} in Kamikawa and Umeo [3]. In this paper, we study the sequence generation power of CA_{1-bit} with 2 internal states. First, we give a characterization of sequences generated by the CA_{1-bit} with 1 internal state in real-time. Then, we consider the class of sequences generated by CA_{1-bit} with 2 internal states and give partial classifications. It is shown that a sequence $\{n^2-n+1\,|\,n=1,2,3,\ldots\}$ can be generated in real-time by a CA_{1-bit} with 2 internal states, but not generated by any CA_{1-bit} with 1 internal state. State-efficient generation algorithms are also presented.

2 Sequence Generation Problem

2.1 1-bit inter-cell-communication cellular automata

 $\mathrm{CA}_{1-\mathrm{bit}}$ consists of an infinite array of identical finite state automata, each located at a positive integer point (See Fig. 1).

Figure 1: 1-bit inter-cell communication cellular automaton.

Each automaton is referred to as a cell. A cell at point i is denoted by C_i , where $i \geq 1$. Each C_i , except for C_1 , is connected to its left- and right-neighbor cells via a left or right one-way communication link. These communication links are indicated by right- and left-pointing arrows in Fig. 1, respectively. Each one-way communication link can transmit only one bit at each step in each direction. One distinguished leftmost cell C_1 , the communication cell, is connected to the outside world. A cellular automaton with 1-bit intercell communication (abbreviated by CA_{1-bit}) consists of an infinite array of finite state automata $A = (Q, \delta)$, where

- 1. Q is a finite set of internal states.
- 2. δ is a function, defining the next state of any cell and its binary outputs to its left- and right-neighbor cells, such that δ : $Q \times \{0,1\} \times \{0,1\} \rightarrow Q \times \{0,1\} \times \{0,1\},$ where $\delta(\mathbf{p},x,y) = (\mathbf{q},x',y'),$ $\mathbf{p},\ \mathbf{q} \in Q,\ x,x',y,y' \in \{0,1\},$ has the following meaning. We assume that at step t the cell C_i is in state \mathbf{p} and is receiving binary inputs x and y from its left and right communication links, respectively. Then, at the next step, t+1, C_i assumes state \mathbf{q} and outputs x' and x' to its left and right communication links, respectively. Note that binary inputs to C_i at step t are also outputs of C_{i-1} and C_{i+1} at step t. A quiescent state $\mathbf{q} \in Q$ has a property such that $\delta(q,0,0) = (q,0,0)$.

Thus, the CA_{1-bit} is a special subclass of *normal* (i.e., *conventional*) cellular automata.

2.2 Sequence generation problem on $CA_{1-\mathrm{bit}}$

We now define the sequence generation problem on CA_{1-bit} . Let M be a CA_{1-bit} , and let $\{t_n|n=1,2,3,\ldots\}$ be an infinite monotonically increasing positive integer sequence defined for natural numbers, such that $t_n\geq n$ for any $n\geq 1$. We then have a semi-infinite array of cells, as shown in Fig. 1, and all cells are in the quiescent state at time t=0. The communication cell C_1 is input the 1-bit signal '1' from the outside world at time t=0 for initiation of the sequence generator. We say that M generates a sequence $\{t_n|n=1,2,3,\ldots\}$ in real-time if and only if the leftmost end cell of M outputs 1 via its leftmost communication link at time $t=t_n$.

We study sequences which can be generated on $CA_{1-\text{bit}}$ with 1 and 2 states, respectively, by using a personal computer. Let k be any natural number such that $k \geq 1$. We enumerate all of the transition rules of the k-states $CA_{1-\text{bit}}$. Each cell takes a state out of k internal states and its input is a 1-bit signal from left-and right-neighbor cells. The quiescent state $q \in Q$ has a property such that $\delta(q,0,0) = (q,0,0)$. Thus, there are $4 \cdot k - 1$ kinds of combinations of input of transition rule. When the cell C_i changes internal state, the cell C_i outputs the 1-bit signal to its left and right communication links. There are $4 \cdot k$ kinds of combinations of output of transition rule. Therefore, $CA_{1-\text{bit}}$ with k internal states has at most $4 \cdot k^{4 \cdot k - 1}$ transition rules.

3 Characterization of sequences generated on

 $\mathrm{CA}_{1-\mathrm{bit}}$

3.1 CA_{1-bit} with 1 internal state

We study sequences generated on $\mathrm{CA}_{1-\mathrm{bit}}$ with 1 internal state, where it has 64 transition rules. We examine the 64 transition rules with the personal computer. Table 1 shows sequences which can be generated on $\mathrm{CA}_{1-\mathrm{bit}}$ with 1 internal state.

Transition rule no. in the Table 1 shows the transition rule number shown as follows:

Let M be a 1-state $\text{CA}_{1-\text{bit}}$. M is formulated as $M = (Q, \delta(\mathbf{Q}, 0, 0) = (\mathbf{Q}, 0, 0), \delta(\mathbf{Q}, 1, 0) = (\mathbf{Q}, a, b), \delta(\mathbf{Q}, 0, 1) = (\mathbf{Q}, c, d), \delta(\mathbf{Q}, 1, 1) = (\mathbf{Q}, e, f)),$ such that $\mathbf{Q} \in Q$, $a, b, c, d, e, f \in \{0, 1\}$.

Transition rule no. = $f \cdot 2^5 + e \cdot 2^4 + d \cdot 2^3 + c \cdot 2^2 + b \cdot 2^1 + a \cdot 2^0 + 1$.

The symbol "-" in the Table 1 shows that the leftmost end cell C_1 always outputs '0' at any time. Sequences generated on CA_{1-bit} with 1 internal state is classified as a union of 25 finite sequences, 6 linear sequences and a non-regular sequence. The class of finite sequence consist of 24 {1} and {1,3}. The class of linear sequence consist of $7 \{2n-1 \mid n=1,2,3,...\}$. The class of non-regular sequence consist of $\{2^n-1 \mid n=1,2,3,...\}$.

Table 1:	Sequences	generated	on	CA_{1-bit}	with	1
internal	state					

Transition	Sequence	Transition	Sequence
rule no.		rule no.	
1	-	33	-
2	-	34	-
3	-	35	-
4	-	36	-
5	(1)	37	(1)
6	(1)	38	{1}
7	(1)	39	(1)
8	(1)	40	(1)
9	-	41	-
10	-	42	-
11	-	43	-
12	-	44	-
13	(1)	45	(1)
14	(2n - 1)	46	(2n-1)
	n = 1, 2, 3,		$n=1,2,3,\ldots\}$
15	(1)	47	(1)
16	$(2^n - 1)$	48	(1, 3)
17	n = 1, 2, 3,	49	
18	-	50	
19	-	51	
20		52	-
21	(1)	53	(1)
22	(1)	54	(1)
23	(1)	55	(1)
24	(1)	56	(1)
25	(1)	57	(1)
26	-	58	-
27	-	59	-
28	-	60	
29	(1)	61	(1)
30	(2n-1)	62	2n-1
'''	n = 1, 2, 3,	02	n = 1, 2, 3,
31	{1}	63	(1)
32	(2n-1)	64	(2n - 1)
	n = 1, 2, 3,		n = 1, 2, 3,

3.2 CA_{1-bit} with 2 internal states

In this section, we study sequences which can be generated on $\mathrm{CA}_{1-\mathrm{bit}}$ with 2 internal states. It simulates by 2097152 transition rules with a personal computer and the generated sequences are examined. Table 3.2 shows the class of sequences generated on $\mathrm{CA}_{1-\mathrm{bit}}$ with 2 internal states. The class 7 consist of union of more sequence and random sequences. Union of more sequence generated by $\mathrm{CA}_{1-\mathrm{bit}}$ with 2 internal states is $[\{1\} \cup \{6 \cdot n - 4 | n = 1, 2, 3, \ldots\}]$, $[\{1\} \cup \{4 \cdot n - 2 | n = 1, 2, 3, \ldots\}]$, etc. Next, we show a generation algorithm of sequence $\{n^2 - n + 1 | n = 1, 2, 3, \ldots\}$ on $\mathrm{CA}_{1-\mathrm{bit}}$ with 2 internal states.

3.2.1 Generation algorithm for sequence $\{n^2 - n + 1 \mid n = 1, 2, 3, ...\}$

Sequence $\{n^2 - n + 1 \mid n = 1, 2, 3, ...\}$ can be generated in real-time by a $CA_{1-\mathrm{bit}}$ with 2 internal states that is given in Table 3. In Fig. 2, we show a time-space diagram for real-time generation of sequence $\{n^2 - n + 1 \mid n = 1, 2, 3, ...\}$.

Real-time generation of sequence $\{n^2 - n + 1 \mid n = 1, 2, 3, ...\}$ is described in terms of 3 waves: a-wave, b-wave, e-wave. The a- and e-waves propagate in the right direction at 1/1 speed. The b-wave propagates in the left direction at 1/1 speed. At time t = 0, the communication cell C_1 is input the 1-bit signal

Table 2: The class of sequences generated on CA_{1-bit} with 2 internal states.

Class	Туре	Sequences	Number
			of
			CA _{1-bit}
1	Finite sequence	Ex. (1), (1,3)	66698
2	$a \cdot n + b$	Ex. $(n n = 1, 2, 3,)$	20784
		$\{3 \cdot n - 1 \mid n = 1, 2, 3, \ldots\}$	
3	$a \cdot 2^n + b$	$\{2^{n}-1 \mid n=1,2,3,\ldots\}$	92
		$(2^n + 1 n = 1, 2, 3,)$	
1 1		$ (2 \cdot 2^{n} - 2 n = 1, 2, 3,) $	
1 1		$(2 \cdot 2^n - 3 \mid n = 1, 2, 3,)$	
1 1		$\{4 \cdot 2^n - 3 \mid n = 1, 2, 3, \ldots\}$	
1 1		$\left\{\frac{3}{2} \cdot 2^n - 1 \mid n = 1, 2, 3, \ldots\right\}$	
1 1		$\begin{cases} \frac{3}{2} \cdot 2^n - 1 \mid n = 1, 2, 3, \dots \\ (\frac{3}{2} \cdot 2^n - 2 \mid n = 1, 2, 3, \dots) \\ (\frac{3}{2} \cdot 2^n - 4 \mid n = 1, 2, 3, \dots) \end{cases}$	
1 1		(5 27 4)	
1 1		$\left\{ \begin{array}{c c} 2 \cdot 2^n - 4 \mid n = 1, 2, 3, \ldots \right\} \end{array} \right\}$	
		$\left\{ \begin{array}{c c} \left(\frac{9}{2} \cdot 2^n - 4 \mid n = 1, 2, 3, \ldots \right) \end{array} \right\}$	
4	$a \cdot 2^n + b \cdot n + c$	$\lceil 7 \cdot 2^n - 4 \cdot n - 8 \rceil$	2
		n = 1, 2, 3,	
		$(\frac{7}{2} \cdot 2^n - 4 \cdot n - 2)$	
		$\tilde{n} = 1, 2, 3,$	
5	$n^2 - n + 1$	$\{n^2 - n + 1 \mid n = 1, 2, 3,\}$	2
6	$\frac{\frac{6+2\sqrt{5}}{3\sqrt{5}-5}(\frac{1+\sqrt{5}}{2})^{n-1} - \frac{6-2\sqrt{5}}{3\sqrt{5}+5}(\frac{1-\sqrt{5}}{2})^{n-1} - \frac{6-2\sqrt{5}}{3\sqrt{5}+5}(\frac{1-\sqrt{5}}{2})^{n-1} - \frac{1}{3\sqrt{5}+5}(\frac{1-\sqrt{5}}{2})^{n-1} - \frac{1}{3$	$\left(\frac{6+2\sqrt{5}}{3\sqrt{5}-5}\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}-\right)$	1
1 "	$3\sqrt{5}-5$	$(\frac{1}{3\sqrt{5}-5}(\frac{1}{2}))$	1
	$\frac{6-2\sqrt{5}}{(1-\sqrt{5})}n-1$	$\begin{bmatrix} \frac{3\sqrt{5}-5}{6-2\sqrt{5}} & \frac{2}{5} \\ \frac{6-2\sqrt{5}}{3\sqrt{5}+5} & (\frac{1-\sqrt{5}}{2})^{n-1} - \end{bmatrix}$	
	$3\sqrt{5}+5$ $(-\frac{2}{2})$ -	$\frac{1}{3\sqrt{5}+5}(\frac{1}{2})^{-1}$	
	$2 \cdot n - 3$	$2 \cdot n - 3 \mid n = 1, 2, 3,$	
7	Other sequences	union of more sequence	204639
		random sequence	

a, b, c: rational number.

Table 3: Transition rules for real-time generation of sequence $\{n^2 - n + 1 \mid n = 1, 2, 3, ...\}$.

ı	Q	R = 0	R = 1	2	A	R = 0	R = 1
	$\Gamma = 0$	(Q,0,0)	(A,0,0)		L = 0	(A,0,0)	(Q,1,1)
	L = 1	(A,1,1)	(Q.1,1)		L = 1	(Q,0,0)	(A,1,1)

'1' from the outside world. As a result, the a-wave is generated. When the a-wave propagates in the right direction, the a-wave generates "partition" to every cell at every step. The e-wave is generated on the cell C_1 . The e-wave propagates in the right direction. When the e-wave reaches the leftmost partition, the e-wave and the leftmost partition are eliminated and the b-wave is generated. The b-wave propagates in the left direction. When the b-wave reaches the communication cell C_1 , the C_1 outputs to the outside world. At after 2 steps, the e-wave is generated. These waves are continuously generated. Therefore, sequence $\{n^2-n+1\,|\,n=1,2,3,...\}$ is generated in real-time by a $CA_{1-\mathrm{bit}}$.

Let i be any positive integer and let j, l, m be any positive natural number. At time t=i, it is assumed that a partition is arranged on all cells since cell $C_l(l \ge j)$ and the cell C_1 outputs the 1-bit signal '1' to outside world. At time t=i+2, the e-wave is generated on the cell C_1 . The e-wave propagates in the left direction at 1/1 speed. When the e-wave reaches C_j at time t=i+2+j-1, the e-wave and the leftmost partition on cell C_j are eliminated and the b-wave is generated. The b-wave, generated by C_j at time t=i+2+j-1, propagates in the left direction at 1/1 speed. The b-wave reaches C_1 and the cell C_1 outputs the 1-bit signal '1' to outside world at time t=i+2+2(j-1). The e-wave is generated at time t=i+2+2(j-1)+2.

Figure 2: Time-space diagram for real-time generation of sequence $\{n^2 - n + 1 \mid n = 1, 2, 3, ...\}$.

Because the leftmost partition moves to the cell C_{j+1} , the cell C_1 outputs the 1-bit signal '1' to outside world at time $t=i+2+2(j-1)+2+2\{(j+1)-1\}$. Therefore, the cell C_1 outputs the 1-bit signal '1' to its left communication link at time $t=i+\sum_{k=1}^m 2+\sum_{k=1}^m 2+j+k-1=1=0$ $m=1,2,3,\ldots$).

The initial configuration is all cell takes state Q and the leftmost cell C_1 is input the 1-bit signal '1' from the outside world. At time t=1, the cell C_1 takes state A, and outputs the 1-bit signal '1' to left- and right-neighbor cells. it is approved that j=1, i=1. C_1 outputs the 1-bit signal '1' to its left communication link at time t=1 and $t=m^2+m+1$ ($m=1,2,3,\ldots$). Therefore, C_1 outputs the 1-bit signal '1' to its left communication link at time $t=n^2-n+1$ ($n=1,2,3,\ldots$). It is seen that the scheme given above can exactly generate sequence $\{n^2-n+1\,|\,n=1,2,3,\ldots\}$ in real-time. We have implemented the algorithm on a computer. We have tested the validity of the rule set from t=0 to t=20000 steps. We obtain the following theorem.

[Theorem 1] Sequence $\{n^2 - n + 1 | n = 1, 2, 3, ...\}$ can be generated by a CA_{1-bit} with 2 internal states in real-time.

In Fig. 3, we show a number of snapshots of the configuration from t = 0 to 31.

4 Conclusions

We have studied a sequence generation problem on CA_{1-bit} with small number of internal states. Characterization of sequences generated by the CA_{1-bit} with 1 and 2 internal states has been given. It has been

Figure 3: A configuration of real-time generation of sequence $\{n^2 - n + 1 \mid n = 1, 2, 3, ...\}$.

shown that sequence $\{n^2 - n + 1 \mid n = 1, 2, 3, \ldots\}$ can be generated in real-time by a CA_{1-bit} with 2 internal states. This algorithms for generation sequence on CA_{1-bit} are optimal in the number of states. A future study in sequence generation problem on CA_{1-bit} is to compare sequence generation power of CA_{1-bit} with sequence generation power of conventional CA.

References

- J. Mazoyer: On optimal solutions to the firing squad synchronization problem, Theoretical Computer Science, 217, pp.53-80(1999).
- [2] H. Umeo: Cellular Algorithms with 1-Bit Inter-Cell Communications, Proc. of MFCS'98 Satellite Workshop on Cellular Automata(Eds. T. Worsch and R. Vollmar),pp.93-104,Interner Bericht 19/98, University of Karlsruhe,(1998).
- [3] N. Kamikawa and H. Umeo: Sequence Generation Problem on Communication-restricted Cellular Automata, The 5th WSEAS International Conference on Non-Linear Analysis, Non-Linear System and Chaos (NOLASC '06), pp.143-148, (2006).
- [4] N. Kamikawa and H. Umeo: Real-Time Sequence Generation Problem on One-Bit Inter-Cell-Communication Cellular Automata, The 15th IEEE International Workshop on Nonlinear Dynamics of Electronic Systems (NDES 2007), pp.86-89, (2007).
- [5] N. Kamikawa and H. Umeo: Some Algorithms for Real-Time Generation of Non-Regular Sequences on One-Bit Inter-Cell-Communication Cellular Automata, SICE Annual Conference 2007, pp.953-958, (2007).