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Convergence Analysis of Cross-Generational Elitist Selection SSE

TAKASHI MARUYAMA! and EISUKE KITAtt

Stochastic Schemata Exploiter (SSE) has interesting features such as very fast convergence
speed and only one control parameter. It sometimes converges to local optimum solution. In
this paper, one describes cross-generational elitist selection SSE (cSSE). Since the use of the
cross-generational elitist selection enhances the diversity of the individuals in the population,
the global search performance is improved. In the numerical examples, cSSE is compared with
genetic algorithm with minimum generation gap (MGG), Bayesian Optimization Algorithm
(BOA), and original SSE. The results show that cSSE can find better solutions at shorter

CPU time than the other algorithms.

1. Introduction

The search performance of the simple Genetic Al-
gorithm (SGA) depends on the early convergence
and evolutionary stagnation'>?. The early con-
vergence means that all individuals gather to same
local optimum solutions at early generation and
therefore, the global optimum solution can not be
found. The evolutionary stagnation means that
the convergence speed slows down. For overcom-
ing these problems, a new generational alternation
model, Minimal Generation Gap (MGQ), was pre-
sented by Sato et.al.?).

Bayesian Optimization Algorithm (BOA) is also
one of evolutionary computations®. BOA searches
a solution by using Bayesian network learned from
the information of the better solutions in the pop-
ulation. Since offspring are generated from the
stochastic model, evolutionary operations in SGA
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such as selection, crossover, and mutation are not
necessary.

Stochastic Schemata Exploiter (SSE) was pre-
sented by Aizawa®. Individuals are ranked ac-
cording to the descending order of their fitness.
Sub-populations are generated according to the
semi-order relation of sub-populations. Common
schemata are extracted from the individuals in
each sub-population. New individuals are gener-
ated from the schemata. Since SSE can spread bet-
ter schemata over the whole population faster than
the GA, the convergence speed of SSE is also faster
than that of the GA. However, SSE sometimes con-
verges to local optimum solution.

The aim of this study is to improve the search
performance of SSE without sacrificing the conver-
gence speed. For this purpose, one presents cross-
generational elitist selection SSE (cSSE), in which
the cross generational elitist selection® is intro-
duced to the original SSE. The use of the cross-
generational elitist selection enhances the diversity

of the population and therefore, the global search



performance is improved. In the numerical exam-
ples, cSSE is compared with genetic algorithm with
minimum generation gap (MGG), Bayesian Opti-
mization Algorithm(BOA), and the original SSE in

some numerical examples.
2. cSSE Algorithm

2.1 Process of cSSE
The cSSE process is summarized as follows.

(1) An initial population is constructed by ran-
domly generating M individuals.

(2) The fitness function of individual is esti-
mated and individual is ranked according to
the descending order of their fitness.

(3) If the criterion is satisfied, the process stops.

(4) M sub-populations are generated according
to the order of the individuals.

(5) Common schemata are extracted from the in-
dividuals in sub-populations.

(6) M offspring are generated from M schemata.

(7) The cross generational elitist selection makes
a new population by the individuals selected
from parent population and offspring popu-
lation.

(8) A generation is incremented and the process
returns to 2.

2.2 Defining sub-populations
Sub-populations are generated according to the
semi-order relation between the subpopulations.

The semi-order relation can be explained as follows.

The population P is composed of the individu-
als c1,¢2, -+,cm. The individuals are numbered
according to the descending order of their fitness.

The sub-population of the population P is referred

as S. When the individual ¢ is excluded from S,

the new sub-population is as S — ¢;. The operator

U denotes the union of sets. The rank of the worst

individual in the sub-population S is represented

as L(S). Since the worst individual in the sub-
population S is cr(s), ¢(z(s)+1) denotes the worse
one by one rank than c;(s) in the whole population

P.

We can find the following semi-order relation

among the sub-populations of the population P;

e The average fitness value of individuals in the
sub-population S is higher than that in the sub-

population S'U cz(s)+1)-
e The average fitness value of the individuals in
the sub-population S is higher than that in the
sub-population (S — czs)) U ¢(z(s)+1)-
For example, the semi-order relation shows the
order of the schemata as follows:
(1) Schema of ci; i.e, chromosome of c; itself.
(2) Common schema between c¢; and cs.
(3) Schema of co.
(4) Common schema between c¢; and cs.
(5)

2.3 Extracting Common Schemata

After defining the sub-populations, the common
schemata are determined as the product set of
the chromosomes of the individuals in the sub-
populations.

2.4 Generating New Individuals

The extracted schemata are composed of three

characters; “0”s, “1”s, and “#”s. The new individ-
uals are defined by randomly replacing “+” by “0”
or “1”.
2.5 Cross Generational Elitist Selection
Algorithm of cross generational elitist selection is
written as follows®.
(1) At generation t — 1, offspring are generated
from individuals in the population.
(2) Populations of parents and offspring are indi-
cated with P(t—1) and O(t—1), respectively.
(3) P(t—1)and O(t—1) are merged to new pop-
ulation P'(t —1).
(4) Individuals in P'(t — 1) are ranked according
to their fitness.
(5) The population P(t) is generated by select-
ing best M individuals from P'(t — 1).

3. Numerical Examples

c¢SSE is compared with GA with MGG, BOA,
SSE, and ¢SSE in some problems”.

In GA with MGG, two-point crossover of
crossover rate = 1 is employed and all individuals
are replaced at every generations. In all algorithms,
the best mutation rates are determined from nu-
merical experiments.

Maximum generation is 40,000 for deception
problem and 15,000 for knapsack problem, re-
spectively. Population size is specified as N; =
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Fig.2 Diversity parameter f; in deception problem

10, 50, 100 or 250 for GA with MGG, SSE and cSSE
and n; = 20,100,200 or 500 for BOA, respectively.
Since BOA replaces half population size at every
generations, computational cost of fitness function
is half as much as the other algorithms. For equal-
izing the computational cost of all algorithms, the
population size of BOA is twice as many as the
other algorithms. Simulations are performed 50
times from different initial populations. The av-
erage fitness values of the best individuals are com-
pared.

3.1 Deception Problem

The deception problem is defines as the summa-
tion of the 4-bit deception sub-problem”. The ob-
jective function f is defined as

fdeception = Z fd(z'z) (1)

i=1

where n denotes the number of 4-bit deception
problem and n = 10. The design variable z; of the
problem are defined as z; € 0000,0001,---,1111.

The history of average fitness of the best individ-
ual is shown in Fig.1. The abscissa and the ordinate
denote the generation and the fitness value, respec-
tively. We notice from Fig.1 that the convergence
speed of MGG is the slowest and that the cSSE is
the fastest among them. Although BOA has Very
fast convergence speed, it may be attracted to a
local optimum solution because the final BOA so-
lution is worse than the other.

Next, we will discuss the diversity of solutions in
deception problem. For that purpose, we will define
the diversity parameter f; as follows.

fi= 5\1—1_1 Z]’M=i+1 | pi —pj | @)
mCs
where M and p denote population size and an indi-
vidual, respectively. | p; —p; | denotes the hamming
distance between p; and p;. Therefore, the diver-
sity of the individuals in the population depends on
the magnitude of the parameter f;.

Figure 2 shows the history of the parameter f;.
While the parameter in BOA decreases to zero im-
mediately, the parameters in the others are rela-
tively big till the final generation. We can recognize
that this is the reason why the BOA is caught to
the local solution.

3.2 Knapsack Problem

When there are n baggage in a knapsack, the
knapsack problem is defined as the maximization
of the value of the knapsack without exceeding the
weight limit b. The problem is defined as

n

max CiZ;
{=i}
=1
n
subject to Z a;z; <b 3)
=1
z; €0,1 (i=1,---,n)

where a; and c¢; denote the weight and the value
of the baggage i, respectively. They are randomly
taken within 1 < a;,¢; < 100 and b = 10000 and
n = 400.

The history of the average fitness value of the
best individuals is shown in Fig.3. Figure 3 illus-
trates that the convergence speed of MGG:-is the
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slowest among them.

Figure 3.2 shows the history of the parameter f;.
Also in this case, the parameter in BOA decreases
to zero immediately. On the other hand, the pa-
rameters in the others are relatively big till the final
generation.

4. Conclusions

In this study, we described the cross generational
elitist selection SSE (cSSE) in which the genera-
tion alternation model of original SSE was changed
to cross generational elitist selection model. The
presented algorithm was compared with GA with
MGG, BOA, and SSE.

Numerical results shows the following features of
cSSE.

In comparing search performance of algorithms,
note that ¢cSSE can find slightly or much better so-
lution than the others in all examples. Specially,

cSSE shows very good performance in the decep-
tion problem. In the problem, the average fitness
value of the final cSSE solutions is better than that
of GA with MGG by about 5%.

In comparing the convergence speed of algo-
rithms, note that ¢SSE is much faster than GA
with MGG and similar to BOA and original SEE in
the deception. Although, in the knapsack problem,
cSSE is slightly slower than BOA, their difference
is small,

Finally, we can conclude that cSSE is better than
the others from both viewpoints of the search per-
formance and the convergence speed.
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